Mancha bacteriana del tomate y del pimiento (Xanthomonas spp.)

.

Condición fitosanitaria: Presente

Grupo de cultivos: Hortícolas

Especie hospedante: Tomate (Solanum lycopersicum) y pimiento (Capsicum annuum)

Epidemiología: policíclica, subaguda

Etiología: Bacteria. Gram negativa

Agente causal: Xanthomonas spp.,

X. vesicatoria  (ex Doidge 1920) Vauterin et al. 1995

* X. euvesicatoria pv. euvesicatoria  Song et al. 2019

X. perforans  Jones et al. 2006

X. gardneri  (ex Sutic 1957) Jones et al. 2006  // Xanthomonas hortorum pv. gardneri   Morinière et al. 2020 in [Morinière L et al. (2020)]

.

Taxonomía: Bacteria > Proteobacteria > Gammaproteobacteria > Xanthomonadales > Xanthomonadaceae > Xanthomonas 

.

.

Antecedentes

La mancha bacteriana está presente prácticamente en todas las zonas del mundo donde se cultiva tomate (Stall et al., 2009) y puede ser devastadora en cultivos en el campo (Araujo et al., 2017). La mancha bacteriana fue observada por primera vez en Texas, Estados Unidos en 1912. Desde entonces, la enfermedad se encuentra distribuida en todas las áreas húmedas y cálidas del mundo. En Argentina fue mencionada por primera vez en la provincia de Buenos Aires en 1939.

.

.

Agentes causales

La enfermedad puede ser causada por bacterias del género Xanthomonas, actualmente clasificadas en cuatro especies: X. vesicatoriaX. euvesicatoria pv. euvesicatoriaX. perforans y X. gardneri. En Argentina sólo están presentes las dos primeras.

. .

Sintomatología

La enfermedad produce lesiones necróticas en todos los órganos aéreos de la planta (hojas, tallos, pétalos y flores y frutos). Los síntomas ocasionados en tomate por las cuatro especies son muy similares: manchas foliares, defoliación y lesiones en frutos; en ocasiones los tejidos necrosados por X. perforans se desprenden, dejando las hojas perforadas. Los síntomas iniciales aparecen como pequeñas lesiones circulares y acuosas, estas lesiones húmedas translúcidas pueden ser observadas fácilmente examinando la hoja a través de la luz. Después de 7 a 14 días de aparición de los primeros síntomas, estas lesiones se agrandan y pierden su aspecto redondeado y el centro de las mismas se oscurece, debido a que se deshidrata y finalmente termina por resquebrajarse. Eventualmente, las lesiones se vuelven marrones con bordes de color amarillo-verdoso, causando la muerte prematura y caída de las hojas. En tallo se observan lesiones similares a las que se pueden observar en hojas y frutos. La mancha bacteriana también puede afectar a los verticilos florales, provocando el aborto o incluso el desprendimiento de las inflorescencias. En fruto, las lesiones causadas por la enfermedad se aprecian en la epidermis, por lo tanto, se reduce la calidad de los mismos.

.

.

Condiciones predisponentes

Las bacterias pueden sobrevivir en distintos ambientes, en los residuos de cultivo o en plantas voluntarias, como epífita sobre su hospedante o plantas voluntarias y en semilla. Esta enfermedad se propaga rápidamente por el uso de semilla enferma y a campo debido al riego por aspersión y la lluvia impulsada por el viento. La infección generalmente ocurre a través de heridas, como las causadas por insectos, lluvia y arena impulsada por el viento, así como la aspersión de alta presión. Las temperaturas cálidas (24-30 °C) con riego por aspersión o las lluvias fuertes favorecen el desarrollo de la enfermedad. La ocurrencia de viento permite una rápida diseminación de la bacteria incrementando la enfermedad.

.

.

.

Manejo Integrado

El manejo de la mancha bacteriana actualmente se basa en el uso de semilla libre de patógenos y rotaciones. También en el uso de cultivares resistentes y en la aplicación frecuente de productos cúpricos. Si existen cepas tolerantes al cobre (Romero et al., 2004) se puede mantener su efectividad mezclándolo con mancozeb (Conover y Gerhold, 1981Marco y Stall 1983). Recientemente se ha reportado sobre la eficiencia de nanopartículas híbridas de cobre-zinc, de magnesio, de plata y de titanio sobre el control de cepas de X. perforans resistentes al cobre (Carvalho et al., 2019; Liao et al., 2019; Ocsoy et al., 2013Paret et al., 2013). En caso de observar la presencia de plantas enfermas eliminarlas para evitar la diseminación del patógeno por agua (riego o lluvia). También eliminar las malezas (especialmente aquellas pertenecientes a la familia Solanaceae), plantas infectadas y restos de cultivo/cosecha. Utilizar marcos de plantación amplios que favorezcan la ventilación para eliminar así el exceso de humedad.

.

.


.

Bibliografía

Abbasi PA, Khabbaz SE, Weselowski B, Zhang L (2015) Occurrence of copper-resistant strains and a shift in Xanthomonas spp. causing tomato bacterial spot in Ontario. Can J Microbiol. 61(10): 753-61. doi: 10.1139/cjm-2015-0228

Abdurrahman FF, Ahamed KM, Amein TAM (2020) Comparison among Various Control Methods of Tomato Bacterial Spot Disease (Xanthomonas campestirs pv.vesicatoria). Rafidain Journal of Science 29: 20-28. doi: 10.33899/rjs.2020.164471

Adhikari P, Adhikari TB, Louws FJ, Panthee DR (2020) Advances and Challenges in Bacterial Spot Resistance Breeding in Tomato (Solanum lycopersicum L.). International Journal of Molecular Sciences 21(5): 1734. doi: 10.3390/ijms21051734

Aguiar T, Luiz C, Rocha N, et al. (2018) Residual polysaccharides from fungi reduce the bacterial spot in tomato plants. Bragantia 77(2): 299-313. doi: 10.1590/1678-4499.2016514

Alvarez-Martinez CE, Sgro GG, Araujo GG, et al. (2020) Secrete or perish: The role of secretion systems in Xanthomonas biology. Computational and Structural Biotechnology Journal 19: 279-302. doi: 10.1016/j.csbj.2020.12.020

An SQ, Potnis N, Dow M, et al. (2020) Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev. 44(1): 1‐32. doi: 10.1093/femsre/fuz024

Angelotti-Mendonça J, de Oliveira PN, Ansante NF, et al. (2022) Expression of the Citrus sinensis EDS5 gene, MATE family, in Solanum lycopersicum L. cv. Micro-Tom enhances resistance to tomato spot disease. Trop. plant pathol. 47: 287–297. doi: 10.1007/s40858-021-00480-y

Araújo ER, Pereira RC, Ferreira MASV, et al. (2011) Effect of temperature on pathogenicity components of tomato bacterial spot and competition between Xanthomonas perforans and X. gardneri. Acta Hortic. 914: 39-42. doi: 10.17660/ActaHortic.2011.914.3

Araújo ER, Costa JR, Ferreira MASV, Quezado‐Duval AM (2017) Widespread distribution of Xanthomonas perforans and limited presence of X. gardneri in Brazil. Plant Pathology 66: 159-168. doi: 10.1111/ppa.12543

Barak JD, Vancheva T, Lefeuvre P, et al. (2016) Whole-Genome Sequences of Xanthomonas euvesicatoria Strains Clarify Taxonomy and Reveal a Stepwise Erosion of Type 3 Effectors. Frontiers in Plant Science 7: 1805. doi: 10.3389/fpls.2016.01805

Burlakoti RR, Hsu CF, Chen JR, Wang JF (2018) Population Dynamics of Xanthomonads Associated with Bacterial Spot of Tomato and Pepper during 27 Years across Taiwan. Plant Disease 102(7): 1348-1356. doi: 10.1094/PDIS-04-17-0465-RE

Carvalho R, Duman K, Jones JB, et al. (2019) Bactericidal Activity of Copper-Zinc Hybrid Nanoparticles on Copper-Tolerant Xanthomonas perforans. Sci Rep 9:  20124. doi: 10.1038/s41598-019-56419-6

Cavalcanti FR, Resende MLV, Carvalho CPS, et al. (2006) Induced defence responses and protective effects on tomato against Xanthomonas vesicatoria by an aqueous extract from Solanum lycocarpum infected with Crinipellis perniciosa. Biological Control 39: 408-417. doi: 10.1016/j.biocontrol.2006.05.009

Catara V, Cubero J, Pothier JF, et al. (2021) Trends in Molecular Diagnosis and Diversity Studies for Phytosanitary Regulated Xanthomonas. Microorganisms 9(4): 862. doi: 10.3390/microorganisms9040862

Chandrasekaran M, Chun SC (2016) Induction of defence-related enzymes in tomato (Solanum lycopersicum) plants treated with Bacillus subtilis CBR05 against Xanthomonas campestris pv. vesicatoria. Biocontrol Science and Technology 26: 1366-1378. doi: 10.1080/09583157.2016.1205181

Chandrasekaran M, Paramasivan M, Chun SC (2019) Bacillus subtilis CBR05 induces Vitamin B6 biosynthesis in tomato through the de novo pathway in contributing disease resistance against Xanthomonas campestris pv. vesicatoria. Scientific Reports 9(1): 6495. doi: 10.1038/s41598-019-41888-6

Chandrasekaran M, Chun SC, Oh JW, et al. (2019) Bacillus subtilis CBR05 for Tomato (Solanum lycopersicum) Fruits in South Korea as a Novel Plant Probiotic Bacterium (PPB): Implications from Total Phenolics, Flavonoids, and Carotenoids Content for Fruit Quality. Agronomy 9: 838. doi: 10.3390/agronomy9120838

Conover RA, Gerhold NR (1981) Mixtures of copper and maneb or mancozeb for control of bacterial spot of tomato and their compatibility for control of fungus diseasesProc. Fla. State Hortic. Soc. 94: 154-156. Link

Costa J, Pothier JF, Boch J, et al. (2021) Integrating science on Xanthomonadaceae for sustainable plant disease management in Europe. Mol Plant Pathol. 22(12): 1461-1463. doi: 10.1111/mpp.13150

Domingo-Calap ML, Bernabéu-Gimeno M, Aure MC, et al. (2022) Comparative Analysis of Novel Lytic Phages for Biological Control of Phytopathogenic Xanthomonas spp. Microbiol Spectr. e0296022. doi: 10.1128/spectrum.02960-22

Farahani AS, Taghavi SM (2017) Induction of resistance in tomato against Xanthomonas perforans by lipopolysaccharides of the pathogen, Archives of Phytopathology and Plant Protection 50: 13-14, 649-657. doi10.1080/03235408.2017.1357378

Felipe V, Bianco M, Terrestre M, et al. (2021) Biocontrol of tomato bacterial spot by novel Bacillus and Pseudomonas strains. Eur J Plant Pathol. doi: 10.1007/s10658-021-02297-6

Ferreira Fd, Tebaldi ND, de Oliveira CA (2021) Photodynamic inactivation to control Xanthomonas gardneri in tomato seeds. Trop. plant pathol. 46: 559–564. doi: 10.1007/s40858-021-00435-3

Giovanardi D, Biondi E, Ignjatov M, et al. (2018) Impact of bacterial spot outbreaks on the phytosanitary quality of tomato and pepper seeds. Plant Pathology 67: 1168-1176. doi: 10.1111/ppa.12839

Graves AS, Alexander SA (2002) Managing Bacterial Speck and Spot of Tomato with Acibenzolar-S-Methyl in Virginia. Plant Health Progress 3:1. doi: 10.1094/PHP-2002-0220-01-RS

Gupta R, Leibman-Markus M, Anand G, et al. (2022) Nutrient Elements Promote Disease Resistance in Tomato by Differentially Activating Immune Pathways. Phytopathology 112(11): 2360-2371. doi: 10.1094/PHYTO-02-22-0052-R

Haq F, Xu X, Ma W, et al. (2021) A Xanthomonas transcription activator-like effector is trapped in nonhost plants for immunity. Plant Communications. doi: 10.1016/j.xplc.2021.100249

Han SW, Hwang BK (2017) Molecular functions of Xanthomonas type III effector AvrBsT and its plant interactors in cell death and defense signaling. Planta 245(2): 237-253. doi: 10.1007/s00425-016-2628-x

Huang C-H, Vallad GE, Zhang S, et al. (2012) Effect of application frequency and reduced rates of acibenzolar-S-methyl on the field efficacy of induced resistance against bacterial spot on tomato. Plant Disease 96: 221-227. doi: 10.1094/PDIS-03-11-0183

Huang R, Hui S, Zhang M, et al. (2017) A Conserved Basal Transcription Factor Is Required for the Function of Diverse TAL Effectors in Multiple Plant Hosts. Frontiers in Plant Science 8: 1919. doi: 10.3389/fpls.2017.01919

Ji P et al. (2006) Integrated biological control of bacterial speck and spot of tomato under Weld conditions using foliar biological control agents and plant growth-promoting rhizobacteria. Biological Control 36: 358–367. doi: 10.1016/j.biocontrol.2005.09.003

Kavitha R, Umesha S (2007) Prevalence of bacterial spot in tomato fields of Karnataka and effect of biological seed treatment on disease incidence. Crop Protection 26:991-997. doi: 10.1016/j.cropro.2006.09.007

Keshavarzi M, Soylu S, Brown I, et al. (2004) Basal defenses induced in pepper by lipopolysaccharides are suppressed by Xanthomonas campestris pv. vesicatoria. Molecular Plant Microbe Interactions 17(7): 805-15. doi: 10.1094/MPMI.2004.17.7.805

Khanal SHind SR, Babadoost M (2020) Occurrence of Copper-Resistant Xanthomonas perforans and X. gardneri in Illinois Tomato Fields. Plant Health Progress 0 0:0, 338-344. doi: 10.1094/PHP-06-20-0048-RS

Klein-Gordon JM, Xing Y, Garrett KA, et al. (2021) Assessing Changes and Associations in the Xanthomonas perforans Population Across Florida Commercial Tomato Fields Via a Statewide Survey. Phytopathology  PHYTO09200402R. doi: 10.1094/PHYTO-09-20-0402-R

Klein-Gordon JM, Timilsina S, Xing Y, et al. (2022) Whole genome sequences reveal the Xanthomonas perforans population is shaped by the tomato production system. ISME J 16: 591–601. doi: 10.1038/s41396-021-01104-8

Klein-Gordon J, Cagmat JG, Minsavage GV, et al. (2022) Strength in numbers: density-dependent volatile-induced antimicrobial activity by Xanthomonas perforans. Phytopathology 113(2): 160-169. doi: 10.1094/PHYTO-04-22-0131-R

Liao YY, Strayer-Scherer AL, White J, et al. (2019) Nano-Magnesium Oxide: A Novel Bactericide Against Copper-Tolerant Xanthomonas perforans Causing Tomato Bacterial Spot. Phytopathology 109(1): 52-62. doi: 10.1094/PHYTO-05-18-0152-R

Liu GF, Su HZ, Sun HY, et al. (2019) Competitive control of endoglucanase gene engXCA expression in the plant pathogen Xanthomonas campestris by the global transcriptional regulators HpaR1 and Clp. Molecular Plant Pathology 20(1): 51-68. doi: 10.1111/mpp.12739

Malvino ML, Bott AJ, Green CE, et al. (2021) Influence of flagellin polymorphisms, gene regulation, and responsive memory on the motility of Xanthomonas species that cause bacterial spot disease of solanaceous plants. Molecular Plant-Microbe Interactions. doi: 10.1094/MPMI-08-21-0211-R

Marco GM y Stall RE (1983) Control of bacterial spot of pepper initiated by strains of Xanthomonas campestris pv. vesicatoria that differ in sensitivity to copper. Plant Disease 67(7): 779-781.

Marin VR, Ferrarezi JH, Vieira G, Sass DC (2019) Recent advances in the biocontrol of Xanthomonas spp. World Journal of Microbiology and Biotechnology 35(5): 72. doi: 10.1007/s11274-019-2646-5

Martin R, Qi T, Zhang H, et al. (2020) Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 370(6521): eabd9993. doi: 10.1126/science.abd9993

Mechan Llontop ME, Sharma P, Aguilera Flores M, et al. (2020) Strain-Level Identification of Bacterial Tomato Pathogens Directly from Metagenomic Sequences. Phytopathology 110(4): 768-779. doi: 10.1094/PHYTO-09-19-0351-R

Medeiros FCL, Resende MLV, Medeiros FHV, et al. (2009) Defense gene expression induced by a coffee-leaf extract formulation in tomato. Physiological and Molecular Plant Pathology 74: 175-183. doi: 10.1016/j.pmpp.2009.11.004

Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol. 46: 101-22. doi: 10.1146/annurev.phyto.121107.104959

Milijašević-Marčić S, Todorović V, Stanojević O, et al. (2018) Antagonistic potential of Bacillus spp. isolates against bacterial pathogens of tomato and fungal pathogen of pepper. Pestic. Phytomed 33(1): 9–18. doi: 10.2298/PIF1801009M

Mitre LKTeixeira-Silva NSRybak Ket al. (2021) The Arabidopsis immune receptor EFR increases resistance to the bacterial pathogens Xanthomonas and Xylella in transgenic sweet orange. 

Morinière L, Burlet A, Rosenthal ER, et al. (2020) Clarifying the taxonomy of the causal agent of bacterial leaf spot of lettuce through a polyphasic approach reveals that Xanthomonas cynarae Trébaol et al. 2000 emend. Timilsina et al. 2019 is a later heterotypic synonym of Xanthomonas hortorum Vauterin et al. 1995. Systematic and Applied Microbiology 43: 126087. doi: 10.1016/j.syapm.2020.126087

Newberry EA, Minsavage GV, Holland A, et al. (2023) Genome-Wide Association to Study the Host-Specificity Determinants of Xanthomonas perforans. Phytopathology 113(3): 400-412. doi: 10.1094/PHYTO-08-22-0294-R

Noël L, Thieme F, Nennstiel D, Bonas U (2002) Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J Bacteriol. 184(5): 1340-1348. doi: 10.1128/JB.184.5.1340-1348.2002

Obradovic A, Jones JB, Momol MT, et al. (2005) Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Disease 89: 712-716. doi: 10.1094/PD-89-0712

Ocsoy I, Paret ML, Ocsoy MA (2013) Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial against Xanthomonas perforans. ACS Nano 7: 8972–8980. doi: 10.1021/nn4034794

OH J-W, Chun SC, Chandrasekaran M (2019) Preparation and In Vitro Characterization of Chitosan Nanoparticles and Their Broad-Spectrum Antifungal Action Compared to Antibacterial Activities against Phytopathogens of Tomato. Agronomy 9: 21. doi: 10.3390/agronomy9010021

Osdaghi E, Taghavi SM, Koebnik R, Lamichhane JR (2018) Multilocus sequence analysis reveals a novel phylogroup of Xanthomonas euvesicatoria pv. perforans causing bacterial spot of tomato in Iran. Plant Pathology 67: 1601-1611. doi: 10.1111/ppa.12864

Osdaghi EJones JBSharma A, et al (2021A centenary for bacterial spot of tomato and pepper. Molecular Plant Pathology 22: 1500– 1519. doi: 10.1111/mpp.13125

Paret ML, Vallad GE, Averett DR, et al. (2013) Photocatalysis: effect of light-activated nanoscale formulations of TiO(2) on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103(3): 228-36. doi: 10.1094/PHYTO-08-12-0183-R. PMID: 23190116.

Peňázová E, Dvořák M, Ragasová L, et al. (2020) Multiplex real-time PCR for the detection of Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and pathogenic Xanthomonas species on tomato plants. PLoS One. 15(1): e0227559. doi: 10.1371/journal.pone.0227559

Popov G, Fraiture M, Brunner F, Sessa G (2016) Multiple Xanthomonas euvesicatoria Type III Effectors Inhibit flg22-Triggered Immunity. Molecular Plant Microbe Interactions 29(8): 651-60. doi: 10.1094/MPMI-07-16-0137-R

Pontes NC, Nascimento ADR, Golynski A, et al. (2016) Intervals and Number of Applications of Acibenzolar-S-Methyl for the Control of Bacterial Spot on Processing Tomato. Plant Disease 100(10): 2126-2133. doi: 10.1094/PDIS-11-15-1286-RE

Potnis N, Timilsina S, Strayer A, et al. (2015) Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Molecular Plant Pathology 16(9): 907‐920. doi: 10.1111/mpp.12244

Priller JP, Reid S, Konein P, et al. (2016) The Xanthomonas campestris pv. vesicatoria Type-3 Effector XopB Inhibits Plant Defence Responses by Interfering with ROS Production. PLoS One 11(7): e0159107. doi: 10.1371/journal.pone.0159107

Prochaska H, Thieme S, Daum S, et al. (2018) A conserved motif promotes HpaB‐regulated export of type III effectors from Xanthomonas. Molecular Plant Pathology 19: 2473-2487. doi: 10.1111/mpp.12725

Ramkissoon A, Francis J, Bowrin V, et al. (2016) Bio‐efficacy of a chitosan based elicitor on Alternaria solani and Xanthomonas vesicatoria infections in tomato under tropical conditions. Annals of Applied Biology 169: 274-283. doi: 10.1111/aab.12299

Ritchie DF (2000) Bacterial spot of pepper and tomato. The Plant Health Instructor. Updated 2007. doi: 10.1094/PHI-I-2000-1027-01

Roach R, Mann R, Gambley CG, et al. (2018) Identification of Xanthomonas species associated with bacterial leaf spot of tomato, capsicum and chilli crops in eastern Australia. European Journal of Plant Pathology 150: 595–608. doi: 10.1007/s10658-017-1303-9

Romero AM, Kousik CS, Ritchie DF (2001) Resistance to bacterial spot in bell pepper induced by acibenzolar-S-methyl. Plant Disease 85: 189-194. doi: 10.1094/PDIS.2001.85.2.189

Romero AM, Montecchia M, Miguens L, García A (2004) Mancha bacteriana en tomate: agente causal. XXVII Congreso Arg. de Horticultura, Merlo, San Luis. Sept.2004. Libro de Resúmenes P.64

Ryan RP, Vorhölter FJ, Potnis N, et al. (2011) Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nature Reviews Microbiology 9(5): 344-55. doi: 10.1038/nrmicro2558

Salomon D, Dar D, Sreeramulu S, Sessa G (2011) Expression of Xanthomonas campestris pv. vesicatoria type III effectors in yeast affects cell growth and viability. Molecular Plant Microbe Interaction 24(3): 305-14. doi: 10.1094/MPMI-09-10-0196

Santos LVS, Melo EA, Silva AMF, et al. (2020) Weeds as alternate hosts of Xanthomonas euvesicatoria pv. euvesicatoria and X. campestris pv. campestris in vegetable-growing fields in the state of Pernambuco, Brazil. Tropical plant pathology 45: 484–492. doi: 10.1007/s40858-020-00350-z

Scheibner F, Marillonnet S, Büttner D (2017) The TAL Effector AvrBs3 from Xanthomonas campestris pv. vesicatoria Contains Multiple Export Signals and Can Enter Plant Cells in the Absence of the Type III Secretion Translocon. Frontiers in Microbiology 8: 2180. doi: 10.3389/fmicb.2017.02180

Sharma S, Bhattarai K (2019) Progress in Developing Bacterial Spot Resistance in Tomato. Agronomy 9: 26. doi: 10.3390/agronomy9010026

Sharma A, Minsavage GV, Gill U, et al. (2022) Identification and mapping of bs8, a novel locus conferring resistance to bacterial spot caused by Xanthomonas gardneri. Phytopathology 112(8): 1640-1650. doi: 10.1094/PHYTO-08-21-0339-R

Schwartz AR, Potnis N, Timilsina S, et al. (2015) Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Frontiers in Microbiology 6: 535. doi: 10.3389/fmicb.2015.00535

Stall RE, Jones JB, Minsavage GV (2009) Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot. Annual review of phytopathology. 47: 265-284. doi: 10.1146/annurev-phyto-080508-081752

Shi R, Panthee DR (2020) Transcriptome-Based Analysis of Tomato Genotypes Resistant to Bacterial Spot (Xanthomonas perforans) Race T4. International Journal of Molecular Sciences 21(11): 4070. doi: 10.3390/ijms21114070

Solé M, Scheibner F, Hoffmeister AK, et al. (2015) Xanthomonas campestris pv. vesicatoria Secretes Proteases and Xylanases via the Xps Type II Secretion System and Outer Membrane Vesicles. Journal of Bacteriology 197(17):2879-93. doi: 10.1128/JB.00322-15

Solís-Sánchez GA, Quiñones-Aguilar EE, Fraire-Velázquez S, et al. (2020) Complete Genome Sequence of XaF13, a Novel Bacteriophage of Xanthomonas vesicatoria from Mexico. Microbiology Resource Announcements 9(5):e01371-19. doi: 10.1128/MRA.01371-19

Suárez-Estrella F, Ros M, Vargas-García MC, et al. (2014) Control of Xanthomonas campestris pv. vesicatoria using agroindustrial waste-based compost. Journal of Plant Pathology 96: 243-248. doi: 10.4454/JPP.V96I2.028

Terán Baptista ZP, de Los Angeles Gómez A, Kritsanida M, et al. (2020) Antibacterial activity of native plants from Northwest Argentina against phytopathogenic bacteria. Nat Prod Res. 34(12): 1782-1785. doi: 10.1080/14786419.2018.1525716

Thieme F, Koebnik R, Bekel T, et al. (2005) Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. Journal of Bacteriology 187(21): 7254-66. doi: 10.1128/JB.187.21.7254-7266.2005

Tai TH, Dahlbeck D, Clark ET, et al. (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci U S A. 96(24): 14153-8. doi: 10.1073/pnas.96.24.14153

Teper D, White FF, Wang N (2023) The Dynamic Transcription Activator-Like Effector Family of Xanthomonas. Phytopathology 113(4): 651-666. doi: 10.1094/PHYTO-10-22-0365-KD

Timilsina S, Potnis N, Newberry EA, et al. (2020) Xanthomonas diversity, virulence and plant-pathogen interactions. Nature Reviews Microbiology 18(8):415-427. doi: 10.1038/s41579-020-0361-8

Tran TM, Chng CP, Pu X, et al. (2021) Potentiation of plant defense by bacterial outer membrane vesicles is mediated by membrane nanodomains. The Plant Cell, koab276. doi: 10.1093/plcell/koab276

Varympopi A, Dimopoulou A, Papafotis D, et al. (2022) Antibacterial Activity of Copper Nanoparticles against Xanthomonas campestris pv. vesicatoria in Tomato Plants. International Journal of Molecular Sciences 23(8): 4080. doi: 10.3390/ijms23084080

Vieira PS, Bonfim IM, Araujo EA, et al. (2021) Xyloglucan processing machinery in Xanthomonas pathogens and its role in the transcriptional activation of virulence factors. Nat Commun 12: 4049. doi: 10.1038/s41467-021-24277-4

Wang W, Feng M, Li X, et al. (2022) Antibacterial Activity of Aureonuclemycin Produced by Streptomyces aureus Strain SPRI-371. Molecules 27(15): 5041. doi: 10.3390/molecules27155041

Wengelnik K, Van den Ackerveken G, Bonas U (1996) HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators. Mol Plant Microbe Interact. 9(8): 704-712. doi: 10.1094/MPMI-9-0704

Yang LC, Gan YL, Yang LY, et al. (2018) Peptidoglycan hydrolysis mediated by the amidase AmiC and its LytM activator NlpD is critical for cell separation and virulence in the phytopathogen Xanthomonas campestris. Molecular Plant Pathology 19(7): 1705-1718. doi: 10.1111/mpp.12653

Zhou Y, Zhang Z, Bao Z, et al. (2022) Graph pangenome captures missing heritability and empowers tomato breeding. Nature. doi: 10.1038/s41586-022-04808-9

¿Cómo citar esta información para publicaciones?
Herbario Virtual. Cátedra de Fitopatología. Facultad de Agronomía de la Universidad de Buenos Aires. https://herbariofitopatologia.agro.uba.ar