Roya negra o del tallo del Trigo (Puccinia graminis f. sp. tritici)

.

Condición fitosanitaria: Presente

Grupo de cultivos: Cereales

Rango de hospedantes: específico / estrecho

Hospedante primario o agronómico (estado uredinial/telial): Trigo (Triticum aestivum)

Hospedante intermediario (estado pycnial/aecial): Agracejo (Berberis spp.), Uva de Oregón (Mahonia spp.) y sus híbridos (× Mahoberberis). Se ha encontrado que más de 90 especies o variedades de Berberis, Mahonia y sus híbridos (× Mahoberberis) son susceptibles a P. graminis; siendo Berberis vulgaris la especie más importante de América del Norte y Europa (estadios pycnial / aecial) (Roelfs, 1985).

El rango de hospedantes de P. graminis es muy amplio comparado con el de la mayoría de las especies de Puccinia spp . Incluye al menos 365 especies de cereales y pastos en 54 géneros (Anikster, 1984). Para la roya del tallo del trigo, causada por P. graminis f. sp. tritici, se demostró que infecta 74 especies de 34 géneros en inoculaciones artificiales, pero solo 28 de esas especies pertenecientes a ocho géneros son hospedantes naturales del patógeno. Otras formae speciales de P. graminis tienen rangos de hospedantes más estrechos que P. graminis f. sp. tritici (Leonard y Szabo, 2005).

Epidemiología: policíclica, subaguda.

Ciclo: macrocíclica, heteroica

Etiología: Hongo. Biotrófico

Agente causal: Puccinia graminis f.sp. tritici Eriks. and E. Henn (Pgt)

Taxonomía: Eukaryota > Fungi > Dikarya > Basidiomycota > Pucciniomycotina > Pucciniomycetes > Pucciniales > Pucciniaceae > Puccinia

.

.

.

Síntomas y signos

Especialmente sobre los tallos se producen pústulas alargadas o lineales de color marrón, las cuales luego oscurecen. El agente causal puede atacar tallos, vainas, hojas, glumas y aristas. Sin embargo es más común sobre los tallos. Al principio se presenta como manchas puntiformes y amarillentas, pero a medida que el hongo se desarrolla en los tejidos de las plantas las manchas se tornan salientes, aumentan de tamaño y se alargan. Luego se forma una pústula que libera, al romper la epidermis, una masa de esporas (uredosporas) de color rojo. Posteriormente, estas pústulas se oscurecen y surgen otro tipo de fructificación (teleutosoro) que también terminan rompiendo la epidermis y forman las típicas esporas de color negro (teleutosporas).

.

.

.

.

Daños

Las plantas afectadas producen granos chuzos. En ataques tempranos e intensos producen menor número de granos/espiga.

.

Esquema del ciclo de la enfermedad (link)

.

Epidemiología

La roya negra se manifiesta principalmente hacia el final de la estación de crecimiento del cultivo, cuando la temperatura es más elevada. La temperatura media óptima es de 19‑22 ºC, requiriendo 10 horas de mojado. Dados sus requerimientos térmicos, su aparición es más frecuente en la región norte. La diseminación por el viento es muy eficiente. El patrón de distribución en el lote es generalizada y uniforme.

Las uredinosporas pueden permanecer viables y unidas a distintos materiales (aluminio, papel, caucho, telas, maderas) hasta 365 días a 23/8°C día/noche. A 36/14°C día/noche, la viabilidad de las urediniosporas se mantuvo durante un máximo de 300 días. Además, a 45/15°C día/noche, las urediniosporas permanecieron viables durante un máximo de 180 días (Barua et al., 2017).

.

Factores de riesgo:

* Uso de cultivares susceptibles

* Tiempo relativamente caluroso y húmedo

* Excesiva fertilización nitrogenada

* Alta densidad de plantas.

.

Manejo de la enfermedad

* Uso de cultivares resistentes: es la medida más efectiva, aunque la resistencia de ciertos cultivares puede “quebrarse”.

* Aplicación de fungicidas: Cuando se trate de cultivares susceptibles, se recomienda la aplicación de fungicidas estrobilurinas + triazoles de acuerdo con el umbral de daño económico (UDE). Los fungicidas no deben aplicarse preventivamente (en ausencia de pústulas).

* Eliminación de plantas guachas: puede reducir el inóculo en un lote, pero por sí sola no es suficiente.

Debido a sus características epidemiológicas, las rotaciones o el manejo de los rastrojos no son medidas adecuadas.

.

 

 

.

.


 

.

Videos

Rust: the fungi that attacks plants. Created by Chris Hammang, Producer Sean O’Donoghue, Scientific Consultant Peter Dodds. C SIRO (Video)

The Life Cycle of Wheat Stem Rust (video)

Ciclo vital Roya Negra 01 (audio aleman, imagenes video muy buenas) (video)

Ciclo vital Roya Negra 02 (audio aleman, imagenes video muy buenas) (video)

Genetic Variation and The Story of Stem Rust (video)

A decade of stem rust surveillance: How far have we come? Where are we going? (video)

Ug99 Wheat Rust Threatens World Wheat Crop (video)

Detection of significant new races of wheat stem rust in Africa and Europe (video)

Fighting Wheat Rust in Kenya – Gene Stewardship and the Borlaug Global Rust Initiative (video)

Contribution of environment and pathogen race to adult plant resistance to stem rust (video)

Breeding durable adult plant resistance to stem rust in spring wheat (video)

Research on Wheat Stem Rust – A re-emerging disease with significant threat to wheat

The Fungus That Threatens the World

Food Fight. A six-part video documentary series looking at the scourge of Ug99, an aggressive crop disease out of Uganda that has scientists scrambling.

.

Artículos

Scientists’ call to arms after deadly crop disease found in East Anglia for first time in 60 years (Chris Hill). 9 February 2018

First report in decades of a forgotten crop pathogen. 8 February 2018

Scientists fear resurgence of devastating wheat disease in Britain & Europe (Thin Lei Win). 8 February 2018

Deadly strain of wheat stem rust disease surfaces in Europe (Mike Listman, CIMMYT). 8 February 2018

Deadly new wheat disease threatens Europe’s crops (Bhattacharya S, Nature News). 2 February 2018

Breakthrough in the battle against Ug99 (Melania Figuroa and Peter Dodds). January 25, 2018

.

Links

Wheat Stem Rust. Durable resistance gene stacks to combat an old enemy. 2Blades Foundation

.


 

Bibliografía

GRRC – Global Rust Reference Centre

Anikster (1984) The Cereal Rusts. Orlando, FL: Academic Press, págs. 115-130.

Aoun M, Kolmer JA, Rouse MN, et al. (2017) Inheritance and Bulked Segregant Analysis of Leaf Rust and Stem Rust Resistance in Durum Wheat Genotypes. Phytopathology 107(12): 1496-1506. doi: 10.1094/PHYTO-12-16-0444-R

Babiker EM, Gordon TC, Chao S, et al. (2017) Molecular mapping of stem rust resistance loci effective against the Ug99 race group of the stem rust pathogen and validation of a SNP marker linked to stem rust resistance gene Sr28. Phytopathology 107(2): 208-215. doi: 10.1094/PHYTO-08-16-0294-R

Babu P, Baranwal DK, Harikrishna, et al. (2020) Application of Genomics Tools in Wheat Breeding to Attain Durable Rust Resistance. Frontiers in Plant Science 11: 567147. doi: 10.3389/fpls.2020.567147

Balint-Kurti P (2019) The plant hypersensitive response: concepts, control and consequences. Molecular Plant Pathology 20: 1163-1178. doi: 10.1111/mpp.12821

Baranwal D (2022) Genetic and genomic approaches for breeding rust resistance in wheat. Euphytica 218: 159. doi: 10.1007/s10681-022-03111-y

Barnes GSaunders DGOWilliamson T (2020) Banishing barberry: The history of Berberis vulgaris prevalence and wheat stem rust incidence across Britain. Plant Pathology 691193– 1202. doi: 10.1111/ppa.13231

Bartaula R, Melo ATO, Connolly BA, et al. (2018) An interspecific barberry hybrid enables genetic dissection of non-host resistance to the stem rust pathogen Puccinia graminis. Journal of Experimental Botany ery066. doi: 10.1093/jxb/ery066

Barua P, You MP, Bayliss KL, et al. (2017) Extended survival of Puccinia graminis f. sp. tritici urediniospores: implications for biosecurity and on-farm management. Plant Pathology (in press).  doi: 10.1111/ppa.12794

Bockus WW, Bowden RL, Hunger RM, et al. (eds.) (2010) Compendium of Wheat Diseases and Insects, Third Edition. APS Press, Minneapolis

Boshoff WHP, Bender CM, Pretorius ZA (2019) The value of field ratings of differential lines for pathotyping Puccinia graminis f. sp. tritici. Eur J Plant Pathol 155: 349–352. doi: 10.1007/s10658-019-01754-7

Bryan A, Korolev A, Bergmann S, et al. (2024) Comparative genomics identifies genetic markers linked to structural variations that differentiate Puccinia graminis tritici and secalis formae speciales. Plant Pathology 00: 1–11. doi:  10.1111/ppa.13890

Burrage SW (1969) Dew and the growth of the uredospore germ tube of Puccinia graminis on the wheat leaf. Annals of Applied Biology 64: 495-501. doi: 10.1111/j.1744-7348.1969.tb02898.x

Campos PE, López JR (2008) Caracterización de aislamientos de Puccinia graminis f. sp. tritici, agente causal de roya del tallo de trigo y su virulencia sobre cultivares de trigo pan. VII Congreso Nacional de Trigo. Santa Rosa – La Pampa. Julio 2008. Estación Experimental INTA Bordenave

Campos PE, Cardarelli FO (2023) Situación actual de las royas de trigo en Argentina. Cambios en las poblaciones de los patógenos y comportamiento sanitario de los cultivares de trigo. INTA. Link

Cao Y, Si B, Zhu G, et al. (2018) Race and virulence of asexual and sexual populations of Puccinia graminis f. sp. tritici in China from 2009 to 2015. European Journal of Plant Pathology 1–11. doi: 10.1007/s10658-018-1581-x

Case AJ, Bhavani S, Macharia G, et al. (2017) Genome-wide association study of stem rust resistance in a world collection of cultivated barley. Theoretical and Applied Genetics 1–20. doi: 10.1007/s00122-017-2989-y

Casey LW, Lavrencic P, Bentham AR, et al. (2016) The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proceedings of the National Academy of Sciences 113(45): 12856-12861. doi: 10.1073/pnas.1609922113

Cesari S, Moore J, Chen C, et al. (2016) Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC-NLR proteins. PNAS 113(36): 10204-9. doi: 10.1073/pnas.1605483113

Chemayek B, Bansal UK, Miah H, et al. (2021) Assessment of Genetic Diversity for Stem Rust and Stripe Rust Resistance in an International Wheat Nursery Using Phenotypic and Molecular Technologies. Uganda Journal of Agricultural Sciences 20. doi: 10.4314/ujas.v20i1.1

Chemonges M, Herselman L, Pretorius ZA, et al. (2023) Mapping and validation of all-stage resistance to stem rust in four South African winter wheat cultivars. Euphytica 219: 11. doi: 10.1007/s10681-022-03143-4

Chen S, Guo Y, Briggs J, et al. (2017) Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum. Theoretical and Applied Genetics: 1-11. doi: 10.1007/s00122-017-3024-z

Chen J, Upadhyaya NM, Ortiz D, et al. (2017) Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 358(6370): 1607-1610. doi: 10.1126/science.aao4810

Chen S, Zhang W, Bolus S, et al. (2018) Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature. PLoS Genet 14(4): e1007287. doi: 10.1371/journal.pgen.1007287

Dehkordi HR, El Jarroudi M, Kouadio L, et al. (2020) Monitoring Wheat Leaf Rust and Stripe Rust in Winter Wheat Using High-Resolution UAV-Based Red-Green-Blue Imagery. Remote Sensing 12: 3696. doi: 10.3390/rs12223696

Dubcovsky J, Ordon F, Perovic D, et al. (2011) Conflicting mapping results for stem rust resistance gene Sr13. Theoretical and Applied Genetics122(3): 659. doi: 10.1007/s00122-010-1495-2

Edae EA, Pumphrey MO, Rouse MN (2018) A Genome-Wide Association Study of Field and Seedling Response to Individual Stem Rust Pathogen Races Reveals Combinations of Race-Specific Genes in North American Spring Wheat. Frontiers in Plant Science 9: 52. doi: 10.3389/fpls.2018.00052

El-Sharkawy HHA, Rashad YM, Ibrahim SA (2018) Biocontrol of stem rust disease of wheat using arbuscular mycorrhizal fungi and Trichoderma spp. Physiological and Molecular Plant Pathology 103: 84-91. doi: 10.1016/j.pmpp.2018.05.002

Eriksson J, Henning E (1896) The cereal rusts. Nortstedt & Söner, Stockholm.

Figueroa M, Upadhyaya NM, Sperschneider J, et al. (2016) Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici. Frontiers in Plant Science 7: 205. doi: 10.3389/fpls.2016.00205

Fetch T, JM Fetch, Zegeye T, Xue A (2017) Races of Puccinia graminis on barley, oat, and wheat in Canada in 2011 and 2012. Canadian Journal of Plant Pathology (in press). doi: 10.1080/07060661.2017.1396499

Förderer A, Li E, Lawson A, et al. (2022) A wheat resistosome defines common principles of immune receptor channels. bioRxiv 2022.03.23.485489; doi: 10.1101/2022.03.23.485489

Gao L, Babiker EM, Nava IC, et al. (2018) Temperature‐sensitive wheat stem rust resistance gene Sr15 is effective against Puccinia graminis f. sp. tritici race TTKSK. Plant Pathology. doi: 10.1111/ppa.12928

Gaurav K, Arora S, Silva P, et al. (2021) Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat Biotechnol. doi: 10.1038/s41587-021-01058-4

Guo Y, Betzen B, Salcedo A, et al. (2022) Population genomics of Puccinia graminis f. sp. tritici highlights the role of admixture in the origin of virulent wheat rust races. Nat Commun 13: 6287. doi: 10.1038/s41467-022-34050-w

Lintz J, Dubrulle G, Cawston E, et al. (2022) A Short Review of Anti-Rust Fungi Peptides: Diversity and Bioassays. Front. Agron. 4: 966211. doi: 10.3389/fagro.2022.966211

Mengesha GG, Moral MT (2020) Management of yellow rust (Puccinia striiformis f. sp. tritici) and stem rust (Puccinia graminis f. sp tritici) of bread wheat through host resistance and fungicide application in Southern Ethiopia. Cogent Food & Agriculture, 6: 1. doi10.1080/23311932.2020.1739493

Hailu A, Woldeab G, Dawit W, Hailu E (2015) Distribution of Wheat Stem Rust (Puccinia graminis f. sp. tritici) in West and Southwest Shewa Zones and Identification of its Phsiological Races. Advances in Crop Science and Technology 3(4): 189. doi: 10.4172/2329-8863.1000189

Henningsen EC, Sallam A, Matny O, et al. (2020) Rpg7: A New Gene for Stem Rust Resistance from Hordeum vulgare ssp. spontaneum. Phytopathology. doi: 10.1094/PHYTO-08-20-0325-R

Henningsen EC, Omidvar V, Della Coletta R, et al. (2021) Identification of Candidate Susceptibility Genes to Puccinia graminis f. sp. tritici in Wheat. Front. Plant Sci. 12: 657796. doi: 10.3389/fpls.2021.657796

Hovmøller MS, Thach T, Justesen AF (2023) Global dispersal and diversity of rust fungi in the context of plant health. Current Opinion in Microbiology 71: 102243. doi: 10.1016/j.mib.2022.102243

Jin Y, Szabo LJ, Pretorius ZA, et al. (2008) Detection of Virulence to Resistance Gene Sr24 Within Race TTKS of Puccinia graminis f. sp. tritici. Plant Disease 92(6): 923-926. doi: 10.1094/PDIS-92-6-0923

Jin Y (2011) Role of Berberis spp. as alternate hosts in generating new races of Puccinia graminis and P. striiformis. Euphytica 179(1): 105–108. doi: 10.1007/s10681-010-0328-3

Kielsmeier-Cook J, Danilova TV, Friebe B, Rouse MN (2015) Resistance to the Ug99 Race Group of Puccinia graminis f. sp. tritici in Wheat–Intra/intergeneric Hybrid Derivatives. Plant Disease 99(10): 1317-1325. doi: 10.1094/PDIS-09-14-0922-RE

Leonard KJ, Szabo LJ (2005) Stem rust of small grains and grasses caused by Puccinia graminis. Molecular Plant Pathology 6(2): 99-111. doi: 10.1111/j.1364-3703.2005.00273.x

Lewis CM, Persoons A, et al. (2018) Potential for re-emergence of wheat stem rust in the United Kingdom. Communications Biology 1, Article number: 13. doi: 10.1038/s42003-018-0013-y

Li TY, Cao YY, Wu XX, et al. (2016) Seedling Resistance to Stem Rust and Molecular Marker Analysis of Resistance Genes in Wheat Cultivars of Yunnan, China. PLoS ONE 11 (10): e0165640. doi: 10.1371/journal.pone.0165640

Li F, Upadhyaya NM, Sperschneider J, et al. (2019) Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation. Nat Commun 10: 5068. doi: 10.1038/s41467-019-12927-7

Luo M, Xie L, Chakraborty S, et al. (2021) A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nature Biotechnology. doi: 10.1038/s41587-020-00770-x

Maree GJ, Castelyn HD, Bender CM, et al. (2020) Comparing infection and colonisation of Puccinia graminis in barley and wheat. Australasian Plant Pathol. 49: 431–445. doi: 10.1007/s13313-020-00715-7

Matthew J. Moscou, H. Peter Van Esse (2017) The quest for durable resistance. Science 358(6370): 1541-1542. doi: 10.1126/science.aar4797

Md Hatta MA, Ghosh S, Athiyannan N, et al. (2020) Extensive Genetic Variation at the Sr22 Wheat Stem Rust Resistance Gene Locus in the Grasses Revealed Through Evolutionary Genomics and Functional Analyses. Mol Plant Microbe Interact. 33(11): 1286-1298. doi: 10.1094/MPMI-01-20-0018-R

Meyer M, Burgin L, Hort MC, et al. (2017) Large-Scale Atmospheric Dispersal Simulations Identify Likely Airborne Incursion Routes of Wheat Stem Rust Into Ethiopia. Phytopathology 107(10): 1175-1186. doi: 10.1094/PHYTO-01-17-0035-FI

Meyer M, Cox JA, Hitchings MDT, et al. (2017) Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply. Nature Plants 3: 780–786. doi: 10.1038/s41477-017-0017-5

Muleta KT, Rouse MN, Rynearson S, et al. (2017) Characterization of molecular diversity and genome-wide mapping of loci associated with resistance to stripe rust and stem rust in Ethiopian bread wheat accessions. BMC Plant Biology 17: 134. doi: 10.1186/s12870-017-1082-7

Nazari K, Mafi M, Yahyaoui A, Park RF (2009) Detection of Wheat Stem Rust (Puccinia graminis f. sp. tritici) Race TTKSK (Ug99) in Iran. Plant Disease 93(3): 317. doi: 10.1094/PDIS-93-3-0317B

Newcomb M, Olivera PD, Rouse MN, et al. (2016) Kenyan isolates of Puccinia graminis f. sp. tritici from 2008 to 2014: Virulence to SrTmp in the Ug99 race group and implications for breeding programs. Phytopathology 106(7): 729-736. doi: 10.1094/PHYTO-12-15-0337-R

Nirmala J, Chao S, Olivera P, et al. (2016) Markers Linked to Wheat Stem Rust Resistance Gene Sr11 Effective to Puccinia graminis f. sp. tritici Race TKTTF. Phytopathology 106(11): 1352-1358. doi: 10.1094/PHYTO-04-16-0165-R

Nirmala J, Saini J, Newcomb M, et al. (2017) Discovery of a Novel Stem Rust Resistance Allele in Durum Wheat that Exhibits Differential Reactions to Ug99 Isolates. G3 (Bethesda) 7(10): 3481–3490. doi: 10.1534/g3.117.300209

Norman M, Bariana H, Bansal U, Periyannan S (2023) The Keys to Controlling Wheat Rusts: Identification and Deployment of Genetic Resistance. Phytopathology 113(4): 667-677. doi: 10.1094/PHYTO-02-23-0041-IA

Norman M, Chen C, Miah H, et al. (2024) Sr65: a widely effective gene for stem rust resistance in wheat. Theor Appl Genet 137: 1. doi: 10.1007/s00122-023-04507-7

Nyamesorto B, Zhang H, Rouse M, et al. (2022) A transcriptomic-guided strategy used in identification of a wheat rust pathogen target and modification of the target enhanced host resistance to rust pathogens. Front. Plant Sci. 13: 962973. doi: 10.3389/fpls.2022.962973

Olivera PD, Badebo A, Xu SS, Klindworth DL, Jin Y (2012) Resistance to Race TTKSK of Puccinia graminis f. sp. tritici in Emmer Wheat. Crop Science 52: 2234-2242. doi: 10.2135/cropsci2011.12.0645

Olivera PD, Jin Y, Rouse M, et al. (2012) Races of Puccinia graminis f. sp. tritici with combined virulence to Sr13 and Sr9e in a field stem rust screening nursery in Ethiopia. Plant Disease  96: 623-628. doi: 10.1094/PDIS-09-11-0793

Olivera P, Newcomb M, Szabo LJ, et al. (2015) Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013–14. Phytopathology 105: 917-928. doi: 10.1094/PHYTO-11-14-0302-FI

Patpour M, Hovmøller MS, Hodson D (2017) First Report of Virulence to Sr25 in Race TKTTF of Puccinia graminis f. sp. tritici Causing Stem Rust on Wheat. Plant Disease 101(9): 1678. doi: 10.1094/PDIS-11-16-1666-PDN

Peterson PD (2018) The Barberry Eradication Program in Minnesota for Stem Rust Control: A Case Study. Annual Review of Phytopathology 56: 203-223. doi: 10.1146/annurev-phyto-080417-050133

Prahl KC, Klink H, Hasler M, et al. (2022) Can Decision Support Systems Help Improve the Sustainable Use of Fungicides in Wheat? Sustainability 14(23): 15599. doi: 10.3390/su142315599

Pretorius ZA, Bender CM, Visser B, Terefe T (2010) First Report of a Puccinia graminis f. sp. tritici Race Virulent to the Sr24 and Sr31 Wheat Stem Rust Resistance Genes in South Africa. Plant Disease 94(6): 784. doi: 10.1094/PDIS-94-6-0784C

Pretorius ZA, Szabo LJ, Boshoff WHP, et al. (2012) First Report of a New TTKSF Race of Wheat Stem Rust (Puccinia graminis f. sp. tritici) in South Africa and Zimbabwe. Plant Disease 96(4): 590. doi: 10.1094/PDIS-12-11-1027-PDN

Pujol V, Robles J, Wang P, et al. (2016) Cellular and molecular characterization of a stem rust resistance locus on wheat chromosome 7AL. BMC Research Notes 9(1): 502. doi: 10.1186/s13104-016-2320-z

Rahmatov M, Otambekova M, Muminjanov H, et al. (2019) Characterization of stem, stripe and leaf rust resistance in Tajik bread wheat accessions. Euphytica 215: 55. doi: 10.1007/s10681-019-2377-6

Roelfs AP (1985) Wheat and rye stem rust. pp. 3–37. In: Roelfs, A. P., Bushnell, W. R. (eds.), The Cereal Rusts Vol. II: Diseases, Distribution, Epidemiology, and Control. Orlando, FL: Academic.

Roelfs AP, Martens JW (1988) An international system of nomenclature for Puccinia graminis f . sp. tritici. Phytopathology 78(5): 526-533. doi: 10.1094/Phyto-78-526

Roelfs AP, Singh RP, Saari EE (1992) Rust Diseases of Wheat: Concepts and methods of disease management. Mexico, D.F.: CIMMYT. 81 pages.

Rouse MN, Nirmala J, Jin Y, Chao S, Fetch TG Jr, Pretorius ZA, Hiebert CW (2014) Characterization of Sr9h, a wheat stem rust resistance allele effective to Ug99. Theoretical and Applied Genetics 127(8): 1681-1688. doi: 10.1007/s00122-014-2330-y

Różewicz M, Wyzińska M, Grabiński J (2021) The Most Important Fungal Diseases of Cereals—Problems and Possible Solutions. Agronomy 11(4): 714. doi: 10.3390/agronomy11040714

Sahu R, Narayanaswamy P, Kundu P, Kumar A (2021) Differential response of phytohormone signalling network determines nonhost resistance in rice during wheat stem rust (Puccinia graminis f. sp. tritici) Colonization. Plant Pathology. Accepted Author Manuscript. doi: 10.1111/ppa.13376

Salcedo A, Rutter W, Wang S, et al. (2017) Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science 358(6370): 1604-1606. doi: 10.1126/science.aao7294

Sallam AH, Tyagi P, Brown-Guedira G, et al. (2017) Genome-Wide Association Mapping of Stem Rust Resistance in Hordeum vulgare subsp. spontaneum. G3 (Bethesda). 7(10): 3491-3507. doi: 10.1534/g3.117.300222

Savadi S, Prasad P, Kashyap PL, Bhardwaj SC (2017) Molecular breeding technologies and strategies for rust resistance in wheat (Triticum aestivum) for sustained food security. Plant Pathology (Accepted). doi: 10.1111/ppa.12802

Shewabez E, Bekele E, Alemu A, et al. (2022) Genetic characterization and genome-wide association mapping for stem rust resistance in spring bread wheat. BMC Genom Data 23: 11. doi: 10.1186/s12863-022-01030-4

Sibikeev SN, Markelova TS, Baukenova EA, Druzhin AE (2016) Likely Threat of the Spread of Race UG99 of Puccinia graminis f. sp. tritici on Wheat in Southeastern Russia. Russian Agricultural Sciences 42(2): 145–148. doi: 10.3103/S1068367416020154

Singh RP, Hodson DP, Jin Y, et al. (2015) Emergence and Spread of New Races of Wheat Stem Rust Fungus: Continued Threat to Food Security and Prospects of Genetic Control. Phytopathology 105(7): 872-884. 10.1094/PHYTO-01-15-0030-FI

Steuernagel B, Periyannan SK, Hernández-Pinzón I, et al. (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nature Biotechnology 34(6): 652-655. doi: 10.1038/nbt.3543

Sucher J, Menardo F, Praz CR, et al. (2017) Transcriptional profiling reveals no response of fungal pathogens to the durable, quantitative Lr34 disease resistance gene of wheat. Plant Pathology  (in press). doi: 10.1111/ppa.12797

Szabo L, Johnson J, Hodson D, et al. (2016) Application of SNP Genotyping Tools for Population Genetics and Molecular Diagnostics of the Wheat Stem Rust Pathogen. 2016 Rust Symposium Abstracts

Szabo LJ, Olivera PD, Wanyera R, et al. (2022) Development of a Diagnostic Assay for Differentiation Between Genetic Groups in Clades I, II, III, and IV of Puccinia graminis f. sp. tritici. Plant Disease 106(8): 2211-2220. doi: 10.1094/PDIS-10-21-2161-RE

Terefe TG, Visser B, Pretorius ZA (2016) Variation in Puccinia graminis f. sp. tritici detected on wheat and triticale in South Africa from 2009 to 2013. Crop Protection 86: 9-16. doi: 10.1016/j.cropro.2016.04.006

Tsushima ALewis CMFlath Ket al. (2022Wheat stem rust recorded for the first time in decades in Ireland. Plant Pathology 00: 1– 11. doi: 10.1111/ppa.13532

Upadhyaya NM, Mago R, Panwar V, et al. (2021) Genomics accelerated isolation of a new stem rust avirulence gene–wheat resistance gene pair. Nature Plants. doi: 10.1038/s41477-021-00971-5

Villegas D, Bartaula R, Cantero-Martínez C, et al. (2022) Barberry plays an active role as an alternate host of Puccinia graminis in Spain. Plant Pathology  1– 11.. doi: 10.1111/ppa.13540

Wang MN, Wan AM, Chen XM (2015) Barberry as alternate host is important for Puccinia graminis f. sp. tritici but not for Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest. Plant Disease 99: 1507-1516. doi: 10.1094/PDIS-12-14-1279-RE

Willocquet LRossi V, Savary S (2022Simulation modelling of yield losses caused by wheat stem rust. Plant Pathology 71: 544– 555. doi: 10.1111/ppa.13488

Xia C, Qiu A, Wang M, et al. (2022) Current Status and Future Perspectives of Genomics Research in the Rust Fungi. International Journal of Molecular Sciences 23(17): 9629. doi: 10.3390/ijms23179629

Yu G, Champouret N, Steuernagel B, et al. (2017) Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis. Theoretical and Applied Genetics 130(6): 1207-1222. doi: 10.1007/s00122-017-2882-8

Yu G, Matny O, Champouret N, et al. (2021) Reference genome-assisted identification of stem rust resistance gene Sr62 encoding a tandem kinase.  PREPRINT (Version 1) available at Research Square. doi: 10.21203/rs.3.rs-1198968/v1

Yu G, Matny O, Gourdoupis S, et al. (2023) The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase. Nat Genet. doi: 10.1038/s41588-023-01402-1

Zhao J, Wang M, Chen X, Kang Z (2016) Role of Alternate Hosts in Epidemiology and Pathogen Variation of Cereal Rusts. Annual Review of Phytopathology 54: 207-228. doi: 10.1146/annurev-phyto-080615-095851

Zhang J, Zhang P, Karaoglu H, Park RF (2017) Molecular Characterization of Australian Isolates of Puccinia graminis f. sp. tritici Supports Long-Term Clonality but also Reveals Cryptic Genetic Variation. Phytopathology 107(9): 1032-1038. doi: 10.1094/PHYTO-09-16-0334-R

Zhang W, Chen S, Abate Z, Nirmala J, Rouse MN, Dubcovsky J (2017) Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. PNAS 114(45): E9483–E9492. doi: 10.1073/pnas.1706277114

Zhang J, Hewitt TC, Boshoff WHP, et al. (2021) A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nat Commun 12: 3378. doi: 10.1038/s41467-021-23738-0

2016 Rust Symposium Abstracts

¿Cómo citar esta información para publicaciones?
Herbario Virtual. Cátedra de Fitopatología. Facultad de Agronomía de la Universidad de Buenos Aires. https://herbariofitopatologia.agro.uba.ar