Roya negra o del tallo del Trigo (Puccinia graminis f.sp. tritici)

Grupo de cultivos: Cereales
Especie hospedante: Trigo (Triticum aestivum)
Etiología: Hongo. Biotrófico
Agente causal: Puccinia graminis f.sp. tritici Eriks. and E. Henn

Taxonomía: Eukaryota > Fungi > Dikarya > Basidiomycota > Pucciniomycotina > Pucciniomycetes > Pucciniales > Pucciniaceae > Puccinia


Síntomas

Especialmente sobre los tallos se producen pústulas alargadas o lineales de color marrón, las cuales luego oscurecen. El agente causal puede atacar tallos, vainas, hojas, glumas y aristas. Sin embargo es más común sobre los tallos. Al principio se presenta como manchas puntiformes y amarillentas, pero a medida que el hongo se desarrolla en los tejidos de las plantas las manchas se tornan salientes, aumentan de tamaño y se alargan. Luego se forma una pústula que libera, al romper la epidermis, una masa de esporas (uredosporas) de color rojo. Posteriormente, estas pústulas se oscurecen y surgen otro tipo de fructificación (teleutosoro) que también terminan rompiendo la epidermis y forman las típicas esporas de color negro (teleutosporas).

Daños

Las plantas afectadas producen granos chuzos. En ataques tempranos e intensos producen menor número de granos/espiga.

Epidemiología

La roya negra se manifiesta principalmente hacia el final de la estación de crecimiento del cultivo, cuando la temperatura es más elevada. La temperatura media óptima es de 19‑22 ºC, requiriendo 10 horas de mojado. Dados sus requerimientos térmicos, su aparición es más frecuente en la región norte. La diseminación por el viento es muy eficiente. El patrón de distribución en el lote es generalizada y uniforme.

Las uredinosporas pueden permanecer viables y unidas a distintos materiales (aluminio, papel, caucho, telas, maderas) hasta 365 días a 23/8°C día/noche. A 36/14°C día/noche, la viabilidad de las urediniosporas se mantuvo durante un máximo de 300 días. Además, a 45/15°C día/noche, las urediniosporas permanecieron viables durante un máximo de 180 días (Barua et al., 2017).

.

Factores de riesgo:

  • Uso de cultivares susceptibles,
  • Tiempo relativamente caluroso y húmedo
  • Excesiva fertilización nitrogenada
  • Alta densidad de plantas.

.

Manejo de la enfermedad

  • uso de cultivares resistentes: es la medida más efectiva, aunque la resistencia de ciertos cultivares puede “quebrarse”.
  • Aplicación de fungicidas: Cuando se trate de cultivares susceptibles, se recomienda la aplicación de fungicidas estrobilurinas + triazoles de acuerdo con el umbral de daño económico (UDE). Los fungicidas no deben aplicarse preventivamente (en ausencia de pústulas).
  • eliminación de plantas guachas: puede reducir el inóculo en un lote, pero por sí sola no es suficiente.

Debido a sus características epidemiológicas, las rotaciones o el manejo de los rastrojos no son medidas adecuadas.

.

 

 

 

 

 

.

Videos|

Rust: the fungi that attacks plants. Created by Chris Hammang, Producer Sean O’Donoghue, Scientific Consultant Peter Dodds. C SIRO (Video)

The Life Cycle of Wheat Stem Rust (video)

Ciclo vital Roya Negra 01 (audio aleman, imagenes video muy buenas) (video)

Ciclo vital Roya Negra 02 (audio aleman, imagenes video muy buenas) (video)

Genetic Variation and The Story of Stem Rust (video)

A decade of stem rust surveillance: How far have we come? Where are we going? (video)

Ug99 Wheat Rust Threatens World Wheat Crop (video)

Detection of significant new races of wheat stem rust in Africa and Europe (video)

Fighting Wheat Rust in Kenya – Gene Stewardship and the Borlaug Global Rust Initiative (video)

Contribution of environment and pathogen race to adult plant resistance to stem rust (video)

Breeding durable adult plant resistance to stem rust in spring wheat (video)

Research on Wheat Stem Rust – A re-emerging disease with significant threat to wheat

 

Bibliografía

GRRC – Global Rust Reference Centre

Aoun M, Kolmer JA, Rouse MN, Chao S, Bulbula WD, Elias EM, Acevedo M (2017) Inheritance and Bulked Segregant Analysis of Leaf Rust and Stem Rust Resistance in Durum Wheat Genotypes. Phytopathology 107(12): 1496-1506. doi: 10.1094/PHYTO-12-16-0444-R

Babiker EM, Gordon TC, Chao S, Rouse MN, Wanyera R, Acevedo M, Brown-Guedira G, Bonman JM (2017) Molecular mapping of stem rust resistance loci effective against the Ug99 race group of the stem rust pathogen and validation of a SNP marker linked to stem rust resistance gene Sr28. Phytopathology 107(2): 208-215. doi: 10.1094/PHYTO-08-16-0294-R

Barua P, You MP, Bayliss KL, Lanoiselet V, Barbetti MJ (2017) Extended survival of Puccinia graminis f. sp. tritici urediniospores: implications for biosecurity and on-farm management. Plant Pathology (in press).  doi: 10.1111/ppa.12794

Campos PE, López JR (2008) Caracterización de aislamientos de Puccinia graminis f. sp. tritici, agente causal de roya del tallo de trigo y su virulencia sobre cultivares de trigo pan. VII Congreso Nacional de Trigo. Santa Rosa – La Pampa. Julio 2008. Estación Experimental INTA Bordenave

Case AJ, Bhavani S, Macharia G, et al. (2017) Genome-wide association study of stem rust resistance in a world collection of cultivated barley. Theoretical and Applied Genetics 1–20. doi: 10.1007/s00122-017-2989-y

Cesari S, Moore J, Chen C, Webb D, Periyannan S, Mago R, Bernoux M, Lagudah ES, Dodds PN (2016) Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC-NLR proteins. PNAS 113(36): 10204-9. doi: 10.1073/pnas.1605483113

Casey LW, Lavrencic P, Bentham AR, Cesari S, Ericsson DJ, Croll T, Turk D, Anderson PA, Mark AE, Dodds PN, Mobli M, Kobe B, Williams SJ (2016) The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proceedings of the National Academy of Sciences 113(45): 12856-12861. doi: 10.1073/pnas.1609922113

Chen S, Guo Y, Briggs J, Dubach F, Chao S, Zhang W, Rouse MN, Dubcovsky J (2017) Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum. Theoretical and Applied Genetics: 1-11. doi: 10.1007/s00122-017-3024-z

Chen J, Upadhyaya NM, Ortiz D, Sperschneider J, Li F, Bouton C, Breen S, Dong C, Xu B, Zhang X, Mago R, Newell K, Xia X, Bernoux M, Taylor JM, Steffenson B, Jin Y, Zhang P, Kanyuka K, Figueroa M, Ellis JG, Park RF, Dodds PN (2017) Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 358(6370): 1607-1610. doi: 10.1126/science.aao4810

Dubcovsky J, Ordon F, Perovic D, Admassu B, Friedt W, Abate Z, Zhang W, Chao S (2011) Conflicting mapping results for stem rust resistance gene Sr13. Theoretical and Applied Genetics122(3): 659. doi: 10.1007/s00122-010-1495-2

Figueroa M, Upadhyaya NM, Sperschneider J, Park RF, Szabo LJ, Steffenson B, Ellis JG and Dodds PN (2016) Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici. Frontiers in Plant Science 7: 205. doi: 10.3389/fpls.2016.00205

Fetch T, JM Fetch, Zegeye T, Xue A (2017) Races of Puccinia graminis on barley, oat, and wheat in Canada in 2011 and 2012. Canadian Journal of Plant Pathology (in press). doi: 10.1080/07060661.2017.1396499

Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch T Jr (2008) Detection of Virulence to Resistance Gene Sr24 Within Race TTKS of Puccinia graminis f. sp. tritici. Plant Disease 92(6): 923-926. doi: 10.1094/PDIS-92-6-0923

Hailu A, Woldeab G, Dawit W, Hailu E (2015) Distribution of Wheat Stem Rust (Puccinia graminis f. sp. tritici) in West and Southwest Shewa Zones and Identification of its Phsiological Races. Advances in Crop Science and Technology 3(4): 189. doi: 10.4172/2329-8863.1000189

Kielsmeier-Cook J, Danilova TV, Friebe B, Rouse MN (2015) Resistance to the Ug99 Race Group of Puccinia graminis f. sp. tritici in Wheat–Intra/intergeneric Hybrid Derivatives. Plant Disease 99(10): 1317-1325. doi: 10.1094/PDIS-09-14-0922-RE

Leonard KJ, Szabo LJ (2005) Stem rust of small grains and grasses caused by Puccinia graminis. Molecular Plant Pathology 6(2): 99-111. doi: 10.1111/j.1364-3703.2005.00273.x

Lewis CM, Persoons A, […] Saunders DGO (2018) Potential for re-emergence of wheat stem rust in the United Kingdom. Communications Biology 1, Article number: 13. doi: 10.1038/s42003-018-0013-y

Li TY, Cao YY, Wu XX, Xu XF, Wang WL (2016) Seedling Resistance to Stem Rust and Molecular Marker Analysis of Resistance Genes in Wheat Cultivars of Yunnan, China. PLoS ONE 11 (10): e0165640. doi: 10.1371/journal.pone.0165640

Matthew J. Moscou, H. Peter Van Esse (2017) The quest for durable resistance. Science 358(6370): 1541-1542. doi: 10.1126/science.aar4797

Meyer M, Burgin L, Hort MC, Hodson DP, Gilligan CA (2017) Large-Scale Atmospheric Dispersal Simulations Identify Likely Airborne Incursion Routes of Wheat Stem Rust Into Ethiopia. Phytopathology 107(10): 1175-1186. doi: 10.1094/PHYTO-01-17-0035-FI

Nazari K, Mafi M, Yahyaoui A, Park RF (2009) Detection of Wheat Stem Rust (Puccinia graminis f. sp. tritici) Race TTKSK (Ug99) in Iran. Plant Disease 93(3): 317. doi: 10.1094/PDIS-93-3-0317B

Newcomb M, Olivera PD, Rouse MN, Szabo LJ, Johnson J, Gale S, Luster DG, Wanyera R, Macharia G, Bhavani S, Hodson D, Patpour M, Hovmøller MS, Fetch TG Jr., Jin Y (2016) Kenyan isolates of Puccinia graminis f. sp. tritici from 2008 to 2014: Virulence to SrTmp in the Ug99 race group and implications for breeding programs. Phytopathology 106(7): 729-736. doi: 10.1094/PHYTO-12-15-0337-R

Nirmala J, Chao S, Olivera P, Babiker EM, Abeyo B, Tadesse Z, Imtiaz M, Talbert L, Blake NK, Akhunov E, Pumphrey MO, Jin Y, Rouse MN (2016) Markers Linked to Wheat Stem Rust Resistance Gene Sr11 Effective to Puccinia graminis f. sp. tritici Race TKTTF. Phytopathology 106(11): 1352-1358. doi: 10.1094/PHYTO-04-16-0165-R

Nirmala J, Saini J, Newcomb M, Olivera P, Gale S, Klindworth D, Elias E, Talbert L, Chao S, Faris J, Xu S, Jin Y, Rouse MN (2017) Discovery of a Novel Stem Rust Resistance Allele in Durum Wheat that Exhibits Differential Reactions to Ug99 Isolates. G3 (Bethesda) 7(10): 3481–3490. doi: 10.1534/g3.117.300209

Olivera PD, Badebo A, Xu SS, Klindworth DL, Jin Y (2012) Resistance to Race TTKSK of Puccinia graminis f. sp. tritici in Emmer Wheat. Crop Science 52: 2234-2242. doi: 10.2135/cropsci2011.12.0645

Olivera PD, Jin Y, Rouse M, Badebo A, Fetch T Jr, Singh RP, Yahyaoui A (2012) Races of Puccinia graminis f. sp. tritici with combined virulence to Sr13 and Sr9e in a field stem rust screening nursery in Ethiopia. Plant Disease  96: 623-628. doi: 10.1094/PDIS-09-11-0793

Olivera P, Newcomb M, Szabo LJ, Rouse M, Johnson J, Gale S, Luster DG, Hodson D, Cox JA, Burgin L, Hort M, Gilligan CA, Patpour M, Justesen AF, Hovmøller MS, Woldeab G, Hailu E, Hundie B, Tadesse K, Pumphrey M, Singh RP, Jin Y (2015) Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013–14. Phytopathology 105: 917-928. doi: 10.1094/PHYTO-11-14-0302-FI

Pretorius ZA, Bender CM, Visser B, Terefe T (2010) First Report of a Puccinia graminis f. sp. tritici Race Virulent to the Sr24 and Sr31 Wheat Stem Rust Resistance Genes in South Africa. Plant Disease 94(6): 784. doi: 10.1094/PDIS-94-6-0784C

Pretorius ZA, Szabo LJ, Boshoff WHP, Herselman L, Visser B (2012) First Report of a New TTKSF Race of Wheat Stem Rust (Puccinia graminis f. sp. tritici) in South Africa and Zimbabwe. Plant Disease 96(4): 590. doi: 10.1094/PDIS-12-11-1027-PDN

Pujol V, Robles J, Wang P, Taylor J, Zhang P, Huang L, Tabe L, Lagudah E (2016) Cellular and molecular characterization of a stem rust resistance locus on wheat chromosome 7AL. BMC Research Notes 9(1): 502. doi: 10.1186/s13104-016-2320-z

Roelfs AP, Martens JW (1988) An international system of nomenclature for Puccinia graminis f . sp. tritici. Phytopathology 78(5): 526-533. doi: 10.1094/Phyto-78-526

Rouse MN, Nirmala J, Jin Y, Chao S, Fetch TG Jr, Pretorius ZA, Hiebert CW (2014) Characterization of Sr9h, a wheat stem rust resistance allele effective to Ug99. Theoretical and Applied Genetics 127(8): 1681-1688. doi: 10.1007/s00122-014-2330-y

Salcedo A, Rutter W, Wang S, Akhunova A, Bolus S, Chao S, Anderson N, Fernandez De Soto M, Rouse M, Szabo L, Bowden RL, Dubcovsky J, Akhunov E (2017) Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science 358(6370): 1604-1606. doi: 10.1126/science.aao7294

Savadi S, Prasad P, Kashyap PL, Bhardwaj SC (2017) Molecular breeding technologies and strategies for rust resistance in wheat (Triticum aestivum) for sustained food security. Plant Pathology (Accepted). doi: 10.1111/ppa.12802

Sibikeev SN, Markelova TS, Baukenova EA, Druzhin AE (2016) Likely Threat of the Spread of Race UG99 of Puccinia graminis f. sp. tritici on Wheat in Southeastern Russia. Russian Agricultural Sciences 42(2): 145–148. doi: 10.3103/S1068367416020154

Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JD, Lagudah ES, Wulff BB (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nature Biotechnology 34(6): 652-655. doi: 10.1038/nbt.3543

Sucher J, Menardo F, Praz CR, Boni R, Krattinger SG, Keller B (2017) Transcriptional profiling reveals no response of fungal pathogens to the durable, quantitative Lr34 disease resistance gene of wheat. Plant Pathology  (in press). doi: 10.1111/ppa.12797

Szabo L, Johnson J, Hodson D, Wanyera R, Olivera P, Jin Y (2016) Application of SNP Genotyping Tools for Population Genetics and Molecular Diagnostics of the Wheat Stem Rust Pathogen. 2016 Rust Symposium Abstracts

Terefe TG, Visser B, Pretorius ZA (2016) Variation in Puccinia graminis f. sp. tritici detected on wheat and triticale in South Africa from 2009 to 2013. Crop Protection 86: 9-16. doi: 10.1016/j.cropro.2016.04.006

Wang MN, Wan AM, Chen XM (2015) Barberry as alternate host is important for Puccinia graminis f. sp. tritici but not for Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest. Plant Disease 99: 1507-1516. doi: 10.1094/PDIS-12-14-1279-RE

Yu, G., Champouret, N., Steuernagel, B. et al. (2017) Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis. Theoretical and Applied Genetics 130(6): 1207-1222. doi: 10.1007/s00122-017-2882-8

Zhang J, Zhang P, Karaoglu H, Park RF (2017) Molecular Characterization of Australian Isolates of Puccinia graminis f. sp. tritici Supports Long-Term Clonality but also Reveals Cryptic Genetic Variation. Phytopathology 107(9): 1032-1038. doi: 10.1094/PHYTO-09-16-0334-R

Zhang W, Chen S, Abate Z, Nirmala J, Rouse MN, Dubcovsky J (2017) Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. PNAS 114(45): E9483–E9492. doi: 10.1073/pnas.1706277114

2016 Rust Symposium Abstracts

.

Artículos

Scientists’ call to arms after deadly crop disease found in East Anglia for first time in 60 years (Chris Hill). 9 February 2018

First report in decades of a forgotten crop pathogen. 8 February 2018

Scientists fear resurgence of devastating wheat disease in Britain & Europe (Thin Lei Win). 8 February 2018

Deadly new wheat disease threatens Europe’s crops (Bhattacharya S, Nature News). 2 February 2018

Breakthrough in the battle against Ug99 (Melania Figuroa and Peter Dodds). January 25, 2018

.

Links

Wheat Stem Rust. Durable resistance gene stacks to combat an old enemy. 2Blades Foundation

.

¿Cómo citar esta información para publicaciones?
Herbario Virtual. Cátedra de Fitopatología. Facultad de Agronomía de la Universidad de Buenos Aires. http://herbariofitopatologia.agro.uba.ar