Síndrome de la muerte súbita (SMS) de la Soja

Grupo de cultivos: Oleaginosas
Especie hospedante: Soja (Glycine max)
Etiología: Hongo. Necrotrófico
Agente causal: Fusarium virguliforme O’Donnell & T. Aoki, Fusarium tucumaniae T. Aoki, O’Donnell, Yos. Homma & Lattanzi, Fusarium brasiliense T. Aoki & O’Donnell, Fusarium crassistipitatum Scandiani, T. Aoki & O´Donnell, sp. nov. (Aoki et al., 2005)

Taxonomía: EukaryotaFungi > Dikarya > Ascomycota > Pezizomycotina > Sordariomycetes > Hypocreales > Nectriaceae > Fusarium

 


Síntomas: Los primeros síntomas generalmente se manifiestan a partir de floración en adelante, aunque pueden observarse en etapas vegetativas, y consisten en clorosis con posterior necrosis internerval (semejantes a las causadas por el cancro y la pudrición por Phialophora gregata). Frecuentemente se produce la caída de los folíolos, quedando los pecíolos adheridos al tallo. Los síntomas foliares progresan rápidamente, de aquí el nombre de muerte súbita. El sistema radicular es afectado y se observa menor desarrollo y podredumbre de raíces, lo cual determina que las plantas afectadas puedan ser fácilmente arrancadas del suelo. En infecciones severas puede observarse manchado rojizo que puede rodear el cuello de la planta. El tejido externo se pudre, pero la médula permanece blanca. Los síntomas pueden ser confundidos con la podredumbre del tallo causada por Phialophora gregata. La clave en la detección de esta enfermedad es que el tejido vascular puede tornarse marrón rojizo, pero la médula permanece siempre blanca. Las plantas se marchitan, mueren prematuramente en forma aislada pero más comúnmente en grupo o a veces distribuidas por todo el campo.

Condiciones ambientales predisponentes para el establecimiento de la enfermedad: Suelos productivos, fértiles, cultivos bajo siembra directa con muchos años de soja sin rotación, húmedos parecen reunir condiciones predisponentes para la enfermedad. La severidad es mayor con tiempo fresco, húmedo y suelos compactados, con drenaje deficiente. A menudo está asociado a nematodes (Heterodera glycines).

Antecedentes y Daños: El síndrome de la muerte súbita o repentina (SMS) es una importante enfermedad fúngica de la soja (Leandro et al., 2012). En la Argentina fue identificada por primera vez en la región pampeana norte, durante la campaña 1991/92, y en el noroeste argentino (NOA) en la campaña siguiente (Scandiani et al., 2012). Progresivamente, se convirtió en una de las patologías de mayor importancia con daños en variedades susceptibles entre 15 y 90%, en el C. y N. del país, respectivamente (Ploper, 1993). Los primeros síntomas generalmente se manifiestan a partir de floración, aunque pueden observarse en etapas vegetativas, y consisten en clorosis con posterior necrosis internerval, pudiendo aparecer en estados vegetativos tempranos como V4 (Rupe & Hartman, 1999). Frecuentemente, se produce la caída de los folíolos, quedando los pecíolos adheridos al tallo. El sistema radicular es afectado, exhibiendo pigmentación rojiza en algunas ocasiones, en forma externa y basal, observándose menor desarrollo y podredumbre de raíces. Las plantas se marchitan, mueren en forma aislada, pero más comúnmente en grupos, o a veces distribuidas por todo el campo.

El agente causal del SMS fue conocido primariamente como Fusarium solani f. sp. glycines, posteriormente a estudios filogenéticos moleculares, morfológicos y patogénicos realizados desde 2003, se demostró que es causado por cuatro especies de Fusarium habitantes del suelo muy relacionadas entre sí: F. virguliforme O’Donnell & T. Aoki, F. tucumaniae T. Aoki, O’Donnell, Yos. Homma & Lattanzi, F. brasiliense T. Aoki & O’Donnell, y una especie nueva Fusarium crassistipitatum Scandiani, T. Aoki & O´Donnell, sp. nov. (Aoki et al., 2005). En Argentina se comprobó la existencia de los todos los agentes causales, con prevalencia de F. tucumaniae, seguido por F. virguliforme, siendo esta última la única especie presente en Estados Unidos (Scandiani et al., 2004; O´Donnell et al., 2010; Aoki et al., 2005). En Brasil, estudios efectuados con pocos aislamientos, demostraron que al menos se encuentran presentes F. tucumaniae, F. brasiliense y F. crassistipitatum. En 2006 se demostró la ocurrencia de la forma sexual (peritecios) de F. tucumaniae mediante cruzamientos en condiciones de laboratorio (Covert et al., 2007) y en 2010 se la encontró en la naturaleza en Fontezuela, Buenos Aires (Scandiani et al., 2011).

Las pérdidas en el rendimiento son variables y dependientes del genotipo, ambiente, condiciones edáficas, fecha de siembra, disponibilidad de K, macroporosidad y pH del suelo, biotipos presentes del/los patógenos y posiblemente de otros factores también involucrados (Estevez de Jensen et al., 2001; Leandro et al., 2012); en Argentina se estimaron daños promedio de 1514 kg/ha (entre 192-3770 kg/ha) según Scandiani et al. (2012).

Manejo de la enfermedad: El hongo sobrevive en el suelo y en restos de raíces. La infección es vía radicular. La mejor estrategia es la utilización de variedades que tengan mejor comportamiento, y la posibilidad de sembrar en suelos supresivos (aquellos suelos que son capaces naturalmente de inhibir la colonización e infección de patógenos) (Westphal y Xing, 2011). Los suelos compactados también aumentan la intensidad de las enfermedades causadas por Fusarium spp. Por lo tanto, minimizar la compactación del suelo mejora  el drenaje y el crecimiento de las raíces de las plantas. Si los granos infectados con Fusarium spp. se utilizan como semilla, los tratamientos de semillas con fungicidas pueden usarse para reducir la podredumbre de las semillas y las enfermedades de las plántulas causadas por Fusarium spp. Sin embargo, el tratamiento de las semillas no es adecuado para el control de la SMS de la soja (Zaworski, 2014).

Otra práctica cultural es la rotación de cultivos incluyendo cultivos no hospedantes, como el trigo con rotación soja-alfalfa, que potencialmente podría reducir el SMS. Sin embargo, la combinación maíz-soja en rotación anual no reduce ni la incidencia ni la severidad de la enfermedad. Rotaciones anuales de maíz y soja (en comparación con otros diseños de rotación plurianuales que incluyen otras gramíneas y forrajeras) no son efectivas para reducir el riesgo del SMS. Xing y Westphal (2009) encontraron que después de rotaciones con maíz, las raíces de soja no estaban visualmente más sanas que las que provenían del monocultivo de soja. Cuando se siembra maíz, la población de patógenos edáficos puede declinar hasta cierto punto, pero no lo suficiente como para reducir la presión de enfermedad cuando se siembre soja al año siguiente. Aunque una rotación de dos años puede mantener las densidades poblacionales del nematodo del quiste de la soja (NQS, causado por Heterodera glycines) por debajo de los umbrales de daño económico, si la densidad poblacional inicial es baja, dicha rotación es demasiado corta como para reducir el riesgo del SMS (Xing y Westphal, 2006; Diaz Arias, 2012; Westphal et al., 2014). Por otro lado, recientemente se ha sugerido que una cosecha de maíz limpia podría reducir el riesgo del SMS, al reducir la colonización de granos de maíz que favorecen la supervivencia de F. virguliforme, mientras que pérdidas considerable de maíz durante la cosecha podrían aumentar el riesgo del SMS (Navi y Yang, 2016). Por lo tanto, el cultivo continuo debe ser evitado si las enfermedades de Fusarium spp. son severas en un campo, especialmente en sistemas bajo siembra directa. De esta manera, en general el SMS de la soja no puede ser controlado por la rotación de cultivos (Marburger et al., 2014).

 

Bibliografía

 

Aoki T, O’Donnell K, Homma Y, Lattanzi AR (2003) Sudden-death syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the Fusarium solani species complex–F. virguliforme in North America and F. tucumaniae in South America. Mycologia 95:660-684.

Aoki T, O’Donnell K, Scandiani MM (2005) Sudden death syndrome of soybean in South America is caused by four species of Fusarium: Fusarium brasiliensesp. nov., F. cuneirostrum sp. nov., F. tucumaniae, and F. virguliforme. Mycoscience 46:162-183. https://doi.org/10.1007/S10267-005-0235-Y

Aoki T, Tanaka F, Suga H, Hyakumachi M, Scandiani MM, O’Donnell K (2012) Fusarium azukicola sp. nov., an exotic azuki bean root-rot pathogen in Hokkaido, Japan. Mycologia 104:1068-1084. https://doi.org/10.3852/11-303

Bailey RC, Norris RH, Reynoldson TB (2004) Bioassessment of Freshwater Ecosystems: Using the Reference Condition Approach. Springer, New York. https://doi.org/10.1007/978-1-4419-8885-0

Baker KF, Cook RJ (1982) Biological Control of Plant Pathogens. American Phytopathological Society, St. Paul, MN.

Bakkeren G, Kronstad JW, Lévesque CA (2000) Comparison of AFLP fingerprints and ITS sequences as phylogenetic markers in Ustilaginomycetes. Mycologia 92:510-521.

Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7:249-260.

Bergmann GT, Walters WA, Knight R, Fierer N, Caporaso JG, Bates ST, Eilers KG, Lauber CL (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 43:1450-1455. https://doi.org/10.1016/j.soilbio.2011.03.012

Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan M-C, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J, Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE, van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LDH, Baker SE, Magnuson J, LaBoissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW, Tsang A (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat. Biotechnol. 29:922-927. https://doi.org/10.1038/nbt.1976

Blaxter M (1998) Caenorhabditis elegans is a nematode. Science 282:2041. https://doi.org/10.1126/science.282.5396.2041

Bowers JH, Kinkel LL, Jones RK (1996) Influence of disease-suppressive strains of Streptomyces on the native Streptomyces community in soil as determined by the analysis of cellular fatty acids. Can. J. Microbiol. 42:27-37. https://doi.org/10.1139/m96-005

Broadbent P, Baker KF (1974) Behavior of Phytophthora cinnamomi in soils suppressive and conducive to root rot. Aust. J. Agric. Res. 25:121. https://doi.org/10.1071/AR9740121

Carmona M, Alvarez D, Luque A, Ferri M, Sautua F, Scandiani M (2011) Daños asociados al síndrome de la muerte súbita en el cultivo de soja. 5° Congreso de la soja del Mercosur. 1° Foro de la soja Asia. 14 al 15 de septiembre de 2011, Rosario, Santa Fe, Argentina.

Castillo Lopez D, Zhu-Salzman K, Ek-Ramos MJ, Sword GA (2014) The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS One 9:e103891. https://doi.org/10.1371/journal.pone.0103891

Caswell EP, McKinney HE, Thomason IJ (1985) Extraction of cysts and eggs of Heterodera schachtii from soil with an assessment of extraction efficiency. J. Nematol. 17:337-340.

Cha JY, Han S, Hong HJ, Cho H, Kim D, Kwon Y, Kwon SK, Crusemann M, Bok Lee Y, Kim JF, Giaever G, Nislow C, Moore BS, Thomashow LS, Weller DM, Kwak YS (2016) Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10:119-129. https://doi.org/10.1038/ismej.2015.95

Chen SY (2007) Suppression of Heterodera glycines in soils from fields with long-term soybean monoculture. Biocontrol Sci. Technol. 17:125-134. https://doi.org/10.1080/09583150600937121

Chet I, Baker R (1980) Induction of suppressiveness to Rhizoctonia solani in soil. Phytopathology 70:994-998. https://doi.org/10.1094/Phyto-70-994

Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18:117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

Clarke KR, Somerfield PJ, Gorley RN (2008) Testing of null hypotheses in exploratory community analyses: Similarity profiles and biota-environment linkage. J. Exp. Mar. Biol. Ecol. 366:56-69. https://doi.org/10.1016/j.jembe.2008.07.009

Clarke KR, Warwick RM (2001) Change in marine communities: An approach to statistical analysis and interpretation. PRIMER-E Ltd., Plymouth.

Cook RJ, Rovira AD (1976) The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils. Soil Biol. Biochem. 8:269-273.

Covert S, Aoki T, O´Donnell K, Starkey D, Holliday A, Geiser DM, Cheung F, Town A, Strom J, Juba J, Scandiani M, Yang XB (2007) Sexual reproduction in the Sudden Death Syndrome pathogen Fusarium tucumaniae. Fungal Genetics and Biology 44:799-807.

Curl E (1963) Control of plant diseases by crop rotation. Bot. Rev. 29:413. https://doi.org/10.1007/BF02860813

Diaz Arias, Maria Mercedes (2012) Fusarium species infecting soybean roots: Frequency, aggressiveness, yield impact and interaction with the soybean cyst nematode. Graduate Theses and Dissertations. 12314.

De La Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ. Microbiol. 10:810-818. https://doi.org/10.1111/j.1462-2920.2007.01506.x

Faghihi J, Ferris JM (2000) An efficient new device to release eggs from Heterodera glycines. J. Nematol. 32:411-413.

Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol. 157:493-502. https://doi.org/10.1046/j.1469-8137.2003.00700.x

Gao X, Jackson TA, Hartman GL, Niblack TL (2006) Interactions between the soybean cyst nematode and Fusarium solani f. sp. glycines based on greenhouse factorial experiments. Phytopathology 96:1409-1415. https://doi.org/10.1094/PHYTO-96-1409

Geiser DM, Jimenez-Gasco MD, Kang SC, Makalowska I, Veeraraghavan N, Ward TJ, Zhang N, Kuldau GA, O’Donnell K (2004) FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 110:473-479. https://doi.org/10.1023/B:EJPP.0000032386.75915.a0

Gongora-Canul CC, Leandro LFS (2011) Effect of soil temperature and plant age at time of inoculation on progress of root rot and foliar symptoms of soybean sudden death syndrome. Plant Dis. 95:436-440. https://doi.org/10.1094/PDIS-07-10-0489

Gray LE, Achenbach LA (1996) Severity of foliar symptoms and root and crown rot of soybean inoculated with various isolates and inoculum rates of Fusarium solani. Plant Dis. 80:1197-1199. https://doi.org/10.1094/PD-80-1197

Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307-319. https://doi.org/10.1038/nrmicro1129

Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:9.

Han JS, Cheng JH, Yoon TM, Song J, Rajkarnikar A, Kim WG, Yoo ID, Yang YY, Suh JW (2005) Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. J. Appl. Microbiol. 99:213-221. https://doi.org/10.1111/j.1365-2672.2005.02614.x

Hartman GL, Bowen CR, Haudenshield JS, Fox CM, Cary TR, Diers BW (2015).Evaluation of disease and pest damage on soybean cultivars released from 1923 through 2008 under field conditions in central Illinois. Agron. J. 107:2373-2380. https://doi.org/10.2134/agronj15.0075

Hartman GL, Chang HX, Leandro LF (2015) Research advances and management of soybean sudden death syndrome. Crop Prot. 73:60-66. https://doi.org/10.1016/j.cropro.2015.01.017

Hashimoto M, Murakami T, Funahashi K, Tokunaga T, Nihei K-i, Okuno T, Kimura T, Naoki H, Himeno H (2006) An RNA polymerase inhibitor, cyclothiazomycin B1, and its isomer. Bioorg. Med. Chem. 14:8259-8270. https://doi.org/10.1016/j.bmc.2006.09.006

Hoper H, Alabouvette C (1996) Importance of physical and chemical soil properties in the suppressiveness of soils to plant diseases. Eur. J. Soil Biol. 32:41-58.

Howard DD, Chambers AY, Brawley PW, Bush TD (1992) Fertilization effects on soybean sudden death syndrome. Better Crops Plant Food 77:14-15.

Hughes TJ, O’Donnell K, Sink S, Rooney AP, Scandiani MM, Luque A, Bhattacharyya MK, Huang XQ (2014) Genetic architecture and evolution of the mating type locus in fusaria that cause soybean sudden death syndrome and bean root rot. Mycologia 106:686-697. https://doi.org/10.3852/13-318

Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res. 17:377-386. https://doi.org/10.1101/gr.5969107

Huson DH, Weber N (2013) Microbial community analysis using MEGAN. Methods Enzymol. 531:465-485. https://doi.org/10.1016/B978-0-12-407863-5.00021-6

Islam KT, Bond JP, Riggs J, Fakhoury AM (2015) Impact of ILeVO on the infection and colonization of soybean roots by Fusarium virguliforme. The American Phytopathological Society Annual Meeting, Pasadena, CA.

James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ, Griffith GW, Vilgalys R (2006) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860-871. https://doi.org/10.1080/15572536.2006.11832616

Kandel YR, Haudenshield JS, Srour AY, Islam KT, Fakhoury AM, Santos P, Wang J, Chilvers MI, Hartman GL, Malvick DK, Floyd CM, Mueller DS, Leandro LF (2015) Multilaboratory comparison of quantitative PCR assays for detection and quantification of Fusarium virguliforme from soybean roots and soil. Phytopathology 105:1601-1611. https://doi.org/10.1094/PHYTO-04-15-0096-R

Kannan R, Veeravel R (2012) Effect of different dose and application methods of Paecilomyces lilacinus (Thom.) Samson against root knot nematode, Meloidogyne incognita (Kofoidand White) Chitwood in okra. J. Agric. Sci. 4:119.

Kantartzi SK, Klein J, Schmidt M (2012) Registration of ‘Saluki 4411’ soybean with resistance to sudden death syndrome and HG type 0 (race 3) soybean cyst nematode. J. Plant Registrations 6:298-301. https://doi.org/10.3198/jpr2011.10.0569crc

Kloepper JW, Rodriguez-Kabana R, Zehnder GW, Murphy JF, Sikora E, Fernandez C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas. Plant Pathol. 28:21-26. https://doi.org/10.1071/AP99003

Kok CJ, Papert A, Hok-A-Hin CH (2001) Microflora of Meloidogyne egg masses: Species composition, population density and effect on the biocontrol agent Verticillium chlamydosporium (Goddard). Nematology 3:729-734. https://doi.org/10.1163/156854101753625236

Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543-546. https://doi.org/10.1038/nature03911

Kwak YS, Weller DM (2013) Take-all of wheat and natural disease suppression: A review. Plant Pathol. J. 29:125-135. https://doi.org/10.5423/PPJ.SI.07.2012.0112

Leandro LF, Tatalovic N, Luckew A (2012) Soybean sudden death syndrome−Advances in knowledge and disease management. CAB Rev. 7:1-14. https://doi.org/10.1079/PAVSNNR20127053

Lévesque CA, De Cock AWAM (2004) Molecular phylogeny and taxonomy of the genus Pythium. Mycol. Res. 108:1363-1383. https://doi.org/10.1017/S0953756204001431

Li S, Hartman GL, Chen Y (2009) Evaluation of aggressiveness of Fusarium virguliforme isolates that cause soybean sudden death syndrome. J. Plant Pathol. 91:77-86.

Malvick DK, Bussey KE (2008) Comparative analysis and characterization of the soybean sudden death syndrome pathogen Fusarium virguliforme in the northern United States. Can. J. Plant Pathol.-Rev. Can. Phytopathol. 30:467-476. https://doi.org/10.1080/07060660809507544

Marburger DA, Venkateshwaran M, Conleya SP, Eskerc PD, Lauera JG, Anéa JM (2014) Crop Rotation and Management Effect on Fusarium spp. Populations. Crop Science 55(1): 365-376. DOI: 10.2135/cropsci2014.03.0199

Marchant R (1999) How important are rare species in aquatic community ecology and bioassessment? A comment on the conclusions of Cao et al. Limnol. Oceanogr. 44:1840-1842.

Mazzola M (2002) Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie van Leeuwenhoek 81:557-564. https://doi.org/10.1023/A:1020557523557

Mazzola M (2004) Assessment and management of soil microbial community structure for disease suppression. Annu. Rev. Phytopathol. 42:35-59. https://doi.org/10.1146/annurev.phyto.42.040803.140408

McLean KS, Lawrence GW (1995) Development of Heterodera glycines as affected by Fusarium solani, the causal agent of sudden death syndrome of soybean. J. Nematol. 27:70-77.

Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097-1100. https://doi.org/10.1126/science.1203980

Mitra S, Stark M, Huson DH (2011) Analysis of 16S rRNA environmental sequences using MEGAN. BMC Genomics 12(Suppl. 3S17. https://doi.org/10.1186/1471-2164-12-S3-S17

Mizuhara N, Kuroda M, Ogita A, Tanaka T, Usuki Y, Fujita K-I (2011) Antifungal thiopeptide cyclothiazomycin B1 exhibits growth inhibition accompanying morphological changes via binding to fungal cell wall chitin. Bioorg. Med. Chem. 19:5300-5310. https://doi.org/10.1016/j.bmc.2011.08.010

Murakami H, Tsushima S, Shishido Y (2000) Soil suppressiveness to clubroot disease of Chinese cabbage caused by Plasmodiophora brassicae. Soil Biol. Biochem. 32:1637-1642. https://doi.org/10.1016/S0038-0717(00)00079-1

Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.

Navi SS, Yang XB (2016) Impact of Crop Residue and Corn-soybean Rotation on the Survival of Fusarium virguliforme a Causal Agent of Sudden Death Syndrome of Soybean. J Plant Pathol Microbiol 7:330. DOI:10.4172/2157-7471.1000330

Njiti VN, Doubler TW, Suttner RJ, Gray LE, Gibson PT, Lightfoot DA (1998) Resistance to soybean sudden death syndrome and root colonization by Fusarium solani f. sp. Glycine in near-isogenic lines. Crop Sci. 38:472-477. https://doi.org/10.2135/cropsci1998.0011183X003800020033x

Nunn GB, Theisen BF, Christensen B, Arctander P (1996) Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. J. Mol. Evol. 42:211-223. https://doi.org/10.1007/BF02198847

O’Donnell K, Sink S, Scandiani M, Luque A, Colleto A, Biasoli M, Lenzi M, Salas G, González V, Ploper LD, Formento AN, Pioli RN, Aoki T, Yang X B, Sarver BAJ (2010) Soybean sudden death syndrome species diversity within North and South America revealed by multilocus genotyping. Phytopathology 100:58-71.

Penton CR, Gupta VVSR, Tiedje JM, Neate SM, Ophel-Keller K, Gillings M, Harvey P, Pham A, Roget DK (2014) Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS One 9:e93893. https://doi.org/10.1371/journal.pone.0093893

Pin Viso N, Sautua F, Scandiani M, Luque A, Simonetti E, Carmona M (2016) In vitro antagonistic activity of native bacteria isolated from soils of the argentine Pampas against Fusarium tucumaniae and Fusarium virguliforme. African Journal of Microbiology Research 10(27): 1031-1035. DOI: 10.5897/AJMR2016.7915

Ploper LD (1993) Síndrome de la muerte súbita: nueva enfermedad de la soja en el noroeste argentino. Avance Agroindustrial 13:5-9.

Pyrowolakis A, Westphal A, Sikora RA, Ole Becker J (2002) Identification of root-knot nematode suppressive soils. Appl. Soil Ecol. 19:51-56. https://doi.org/10.1016/S0929-1393(01)00170-6

Rosenzweig N, Tiedje JM, Quensen JF, Meng QX, Hao JJJ (2012) Microbial communities associated with potato common scab-suppressive soil determined by pyrosequencing analyses. Plant Dis. 96:718-725. https://doi.org/10.1094/PDIS-07-11-0571

Roy KW, Rupe JC, Hershman DE, Abney TS (1997) Sudden death syndrome of soybean. Plant Dis. 81:1100-1111. https://doi.org/10.1094/PDIS.1997.81.10.1100

Rupe JC, Gbur EE Jr (1995) Effect of plant age, maturity group, and the environment on disease progress of sudden death syndrome of soybean. Plant Dis. 79:139-143. https://doi.org/10.1094/PD-79-0139

Rupe JC, Robbins RT, Gbur EE (1997) Effect of crop rotation on soil population densities of Fusarium solani and Heterodera glycines and on the development of sudden death syndrome of soybean. Crop Prot. 16:575-580. https://doi.org/10.1016/S0261-2194(97)00031-8

Rupe JC, Sabbe WE, Robbins RT, Gbur EE Jr (1993) Soil and plant factors associated with sudden death syndrome of soybean. J. Prod. Agric. 6:218-221. https://doi.org/10.2134/jpa1993.0218

Rupe JC, Hartman GL (1999) Sudden death syndrome. In: Hartman GL, Sinclair JC, Rupe JC (Eds.) Compendium of Soybean Diseases. 4º ed. St. Paul MN. APS Press. pp. 37-39.

Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363-383. https://doi.org/10.1007/s11104-009-0001-6

Sagova-Mareckova M, Daniel O, Omelka M, Kristufek V, Divis J, Kopecky J (2015) Determination of factors associated with natural soil suppressivity to potato common scab. PLoS One 10:e0116291. https://doi.org/10.1371/journal.pone.0116291

Sanogo S, Yang XB (2001) Relation of sand content, pH, and potassium and phosphorus nutrition to the development of sudden death syndrome in soybean. Can. J. Plant Pathol. 23:174. https://doi.org/10.1080/07060660109506927

Scandiani MM, Ruberti D, O’Donnell K, Aoki T, Pioli R, Giorda L, Luque A, Biasoli M (2004) Recent outbreak of soybean sudden death syndrome caused by Fusarium virguliforme and Fusarium tucumaniae in Argentina. Plant Disease 88:1044.

Scandiani MM, Ruberti D, Giorda L, Pioli R, Luque A, Bottai H, Ivancovich JJ, Aoki T, O’Donnell K (2011) Comparison of inoculation methods for characterizing relative aggressiveness of two soybean sudden-death syndrome pathogens: Fusarium virguliforme and F. tucumaniae. Tropical Plant Pathology 36:133-140.

Scandiani M, Carmona M, Luque S, da Silva Matos K, Lenzi L, Formento N, Martinez C, Ferri M, Lo Piccolo M, Tartabini M, Alvarez D, Sautua F (2012) Isolation, identification and yield losses associated with sudden death syndrome in soybeans in Argentina. Tropical Plant Pathology 37(5): 358-362. DOI: 10.1590/S1982-56762012000500009

Scherm H, Yang XB (1999) Risk assessment for sudden death syndrome of soybean in the north-central United States. Agric. Syst. 59:301-310. https://doi.org/10.1016/S0308-521X(99)00011-6

Scherm H, Yang XB, Lundeen P (1998) Soil variables associated with sudden death syndrome in soybean fields in Iowa. Plant Dis. 82:1152-1157. https://doi.org/10.1094/PDIS.1998.82.10.1152

Schottel JL, Shimizu K, Kinkel LL (2001) Relationships of in vitro pathogen inhibition and soil colonization to potato scab biocontrol by antagonistic Streptomycesspp. Biol. Control 20:102-112. https://doi.org/10.1006/bcon.2000.0893

Sharifi Tehrani A, Ramezani M (2003) Biological control of Fusarium oxysporum, the causal agent of onion wilt by antagonistic bacteria. Communications Agric. Appl. Biol. Sci. 68:543-547.

Srour AY, Fakhoury AM, Brown RL (2017) Targeting aflatoxin biosynthetic genes. Pages 159-171 in: Mycotoxigenic Fungi: Methods and Protocols. A. Moretti and A. Susca, eds. Springer, New York. https://doi.org/10.1007/978-1-4939-6707-0_10

Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol. 14:209. https://doi.org/10.1186/gb-2013-14-6-209

Vick CM, Bond JP, Chong SK, Russin JS (2006) Response of soybean sudden death syndrome to tillage and cultivar. Can. J. Plant Pathol.-Rev. Can. Phytopathol. 28:77-83. https://doi.org/10.1080/07060660609507273

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 172:4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

Weibelzahl-Fulton E, Dickson DW, Whitty EB (1996) Suppression of Meloidogyne incognita and M. javanica by Pasteuria penetrans in field soil. J. Nematol. 28:43-49.

Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40:309-348. https://doi.org/10.1146/annurev.phyto.40.030402.110010

Westphal A, Becker JO (2001) Components of soil suppressiveness against Heterodera schachtii. Soil Biol. Biochem. 33:9-16. https://doi.org/10.1016/S0038-0717(00)00108-5

Westphal, A., Abney, T.S., Xing, L., Shaner, G. 2008. Sudden Death Syndrome. The Plant Health Instructor. Available at: http://apsnet.org/education/LessonsPlantPath/SuddenDeathSyn/default.htm. DOI:10.1094/PHI-I-2008-0102-01

Westphal A, Xing LJ (2011) Soil suppressiveness against the disease complex of the soybean cyst nematode and sudden death syndrome of soybean. Phytopathology 101:878-886. DOI: 10.1094/PHYTO-09-10-0245.

Westphal A, Li C, Xing L, McKay A, Malvick D (2014) Contributions of Fusarium virguliforme and Heterodera glycines to the Disease Complex of Sudden Death Syndrome of Soybean. PLoS ONE 9(6): e99529. DOI: 10.1371/journal.pone.0099529

Wrather A, Koenning S (2009) Effects of diseases on soybean yields in the United States 1996 to 2007. Plant Health Progress. Published online. doi: 10.1094/PHP-2009-0401-01-RS

Wrather JA, Koenning SR (2006) Estimates of disease effects on soybean yields in the United States 2003 to 2005. J. Nematol. 38:173-180.

Xing LJ, Westphal A (2006) Interaction of Fusarium solani f. sp. glycines and Heterodera glycines in sudden death syndrome of soybean. Phytopathology 96:763-770. DOI: 10.1094/PHYTO-96-0763.

Xing LJ, Westphal A (2009) Effects of crop rotation of soybean with corn on severity of sudden death syndrome and population densities of Heterodera glycines in naturally infested soil. Field Crops Res 112: 107–117. https://doi.org/10.1016/j.fcr.2009.02.008

Xing LJ, Westphal A (2013) Synergism in the interaction of Fusarium virguliforme with Heterodera glycines in sudden death syndrome of soybean. J. Plant Dis. Prot. 120:209-217. https://doi.org/10.1007/BF03356477

Zaworski Edward R (2014) Effects of ILeVO® on soybean sudden death syndrome and soybean cyst nematode. Graduate Theses and Dissertations. 14261. http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=5268&context=etd

Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7:203-214. https://doi.org/10.1089/10665270050081478

¿Cómo citar esta información para publicaciones?
Herbario Virtual. Cátedra de Fitopatología. Facultad de Agronomía de la Universidad de Buenos Aires. http://herbariofitopatologia.agro.uba.ar