Viruela de la Acelga y de la Remolacha (Cercospora beticola)

.

Condición fitosanitaria: Presente 

Grupo de cultivos: Hortícolas

Especie hospedante: Remolacha / Acelga (Beta vulgaris)

Rango de hospedantes: amplio, la mayoría de las especies del género Beta. Se ha reportado como patógeno en otros miembros de Chenopodiaceae (p. ej., Chenopodium album, espinacas) así como miembros de Acanthaceae (p. ej., Acanthus mollis), Apiaceae (p. ej., Apium), Asteraceae (p. ej., Crisantemo, lechuga, cártamo), Brassicaceae (p. ej., mostaza silvestre), Malvaceae (p. ej., Malva), Plumbaginaceae (p. ej., Limonium) y Polygonaceae (p. ej., Rumex obtusifolius).

Etiología: Hongo. Hemibiotrófico

Agente causal: Cercospora beticola  Saccardo, 1876

Taxonomía: Fungi > Dikarya > Ascomycota > Pezizomycotina > Dothideomycetes > Capnodiales > Mycosphaerellaceae > Cercospora

.

.

.

Antecedentes

La mancha foliar por Cercospora, causada por el hongo patógeno Cercospora beticola, es la enfermedad foliar más destructiva de la remolacha azucarera en todo el mundo.

.

Síntomas y signos

En hojas se observan manchas circulares, de borde pardo rojizo y centro pardo claro a grisáceo que llega a desprenderse. Las manchas de expanden en tamaño abarcando zonas extensas de la lamina foliar. Sobre las lesiones  se presentan grupos de conidióforos y conidios que aparecen como puntuaciones oscuras. Las hojas más viejas a menudo muestran síntomas primero y las hojas más jóvenes se infectan a medida que avanza la enfermedad.

.

.

.

Condiciones predisponentes

Alta humedad relativa (90%), temperaturas diurnas entre 25-35 ºC y en la noche no inferiores a 16 ºC.

.

Ciclo de la enfermedad

El patógeno sobrevive en restos culturales, semillas o en malezas. Las esporas son dispersadas principalmente por el agua de riego y por el viento. Se produce la infección en el cultivo, y la aparición de síntomas y signos. La penetración en las hojas sólo se realiza a través de estomas. Se producen sucesivas infecciones.

.

.

Manejo

* Siembra de variedades resistentes (si las hubiera disponibles)

* Rotación de cultivos

* Uso de funguicidas.

* Control de hospedantes secundarios

.

.


.

Bibliografía

Barreto A, Ispizua Yamati FR, Varrelmann M, et al. (2023) Disease Incidence and Severity of Cercospora Leaf Spot in Sugar Beet Assessed by Multispectral Unmanned Aerial Images and Machine Learning. Plant Dis. 107(1): 188-200. doi: 10.1094/PDIS-12-21-2734-RE

Birla K, Rivera-Varas V, Secor GA, et al. (2012) Characterization of cytochrome b from European field isolates of Cercospora beticola with quinone outside inhibitor resistance. European Journal of Plant Pathology 134(3): 475-488. doi: 10.1007/s10658-012-0029-y

Bolton MD, Birla K, Rivera-Varas V, Rudolph KD, Secor GA (2012) Characterization of CbCyp51 from field isolates of Cercospora beticola. Phytopathology 102: 298-305. doi: 10.1094/PHYTO-07-11-0212

Bolton MD, Rivera-Varas V, del Río Mendoza LE, Khan MFR, Secor GA (2012) Efficacy of variable tetraconazole rates against Cercospora beticola isolates with differing in vitro sensitivities to DMI fungicides. Plant Disease 96: 1749-1756. doi: 10.1094/PDIS-03-12-0255-RE

Bolton MD, Rivera V, Secor G (2013) Identification of the G143A mutation associated with QoI resistance in Cercospora beticola field isolates from Michigan, United States. Pest Management Science 69(1): 35-39. doi: 10.1002/ps.3358

Bolton MD, Ebert MK, Faino L, Rivera-Varas V, de Jonge R, Van de Peer Y, Thomma BP, Secor GA (2016) RNA-sequencing of Cercospora beticola DMI-sensitive and -resistant isolates after treatment with tetraconazole identifies common and contrasting pathway induction. Fungal Genetics and Biology 92: 1-13. doi: 10.1016/j.fgb.2016.04.003

Carrión VJ, Perez-Jaramillo J, Cordovez V, et al. (2019) Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366: 606–612. doi: 10.1126/science.aaw9285

Chen CKeunecke HBemm F, et al. (2023GWAS reveals a rapidly evolving candidate avirulence effector in the Cercospora leaf spot pathogen. Molecular Plant Pathology 00: 113. doi: 10.1111/mpp.13407

de Jonge R, Ebert MK, Huitt-Roehl CR, Pal P, Suttle JC, Spanner RE, Neubauer JD, Jurick WM 2nd, Stott KA, Secor GA, Thomma BPHJ, Van de Peer Y, Townsend CA, Bolton MD (2018) Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus Colletotrichum. Proc Natl Acad Sci U S A. 115(24): E5459-E5466. doi: 10.1073/pnas.1712798115

Ebert, MKRangel, LISpanner, RE, et al. (2020) Identification and characterization of Cercospora beticola necrosis‐inducing effector CbNip1. Molecular Plant Pathology 001– 16. doi: 10.1111/mpp.13026

El Jarroudi M, Chairi F, Kouadio L, et al. (2021) Weather-Based Predictive Modeling of Cercospora beticola Infection Events in Sugar Beet in Belgium. Journal of Fungi. 7(9): 777. doi: 10.3390/jof7090777

Karaoglanidis GS, Karadimos DA, Ioannidis PM (2003) Detection of resistance to sterol demethylation-inhibiting (DMI) fungicides in Cercospora beticola and efficacy of control of resistant and sensitive strains with flutriafol. Phytoparasitica 31(4): 373-380. doi: 10.1007/BF02979809

Kayamori M, Zakharycheva A, Saito H, et al. (2021) Resistance to demethylation inhibitors in Cercospora beticola, a pathogen of sugar beet in Japan, and development of unique cross-resistance patterns. Eur J Plant Pathol 160: 39–52. doi: 10.1007/s10658-021-02219-6

Kiniec A, Pieczul K, Piszczek J (2022) The first detection of multiple resistant (MBC and QoI) strains of Cercospora beticola Sacc. in Poland. Crop Protection 158: 106006. doi: 10.1016/j.cropro.2022.106006

Kirk WW, Hanson LE, Franc GD, et al. (2012) First report of strobilurin resistance in Cercospora beticola in sugar beet (Beta vulgaris) in Michigan and Nebraska, USA. New Disease Reports 26: 3. doi: 10.5197/j.2044-0588.2012.026.003

Kumar R, Mazakova J, Ali A, et al. (2021) Characterization of the Molecular Mechanisms of Resistance against DMI Fungicides in Cercospora beticola Populations from the Czech Republic. Journal of Fungi. 7(12): 1062. doi: 10.3390/jof7121062

Liu Q, Dong G, Qi H, et al. (2022) A new method for single spore isolation and fungicide resistance monitoring of Cercospora beticola, and the first report of QoI-resistant isolates with G143A or F129L mutations of the CbCyt b gene in China. Journal of Phytopathology 00, 1– 8. doi: 10.1111/jph.13137

Matsuzaki Y, Uda Y, Kurahashi M, Iwahashi F (2021) Microtiter plate test using liquid medium is an alternative method for monitoring metyltetraprole sensitivity in Cercospora beticola. Pest Manag Sci 77: 1226-1234. doi: 10.1002/ps.6133

Muellender MM, Mahlein A-K, Stammler G, Varrelmann M (2021) Evidence for the association of target-site resistance in cyp51 with reduced DMI sensitivity in European Cercospora beticola field isolates. Pest Manag Sci, 77: 1765-1774. doi: 10.1002/ps.6197

Pethybridge SJ, Vaghefi N, Kikkert JR (2017) Horticultural Characteristics and Susceptibility of Table Beet Cultivars to Cercospora Leaf Spot in New York. HortTechnology hortte 27(4): 530-538. doi: 10.21273/HORTTECH03743-17

Pethybridge SJ, Sharma S, Hansen ZR, Vaghefi N, Hanson LE, Kikkert JR (2020) Improving fungicide-based management of Cercospora leaf spot in table beet in New York, USA. Canadian Journal of Plant Pathology 42: 353-366. doi10.1080/07060661.2019.1690048

Piszczek J, Pieczul K, Kiniec A (2017) First report of G143A strobilurin resistance in Cercospora beticola in sugar beet (Beta vulgaris) in Poland. Journal of Plant Diseases and Protection: 1-3. doi: 10.1007/s41348-017-0119-3

Rangel LI, Spanner RE, Ebert MK, et al. (2020) Cercospora beticola: The intoxicating lifestyle of the leaf spot pathogen of sugar beet. Molecular Plant Pathology 21: 1020–1041. doi: 10.1111/mpp.12962

Rangel LI, Wyatt N, Courneya I, et al. (2024) CbCyp51-Mediated Demethylation Inhibitor Resistance Is Modulated by Codon Bias. Phytopathology: PHYTO01240034R. doi: 10.1094/PHYTO-01-24-0034-R

Spanner R, Taliadoros D, Richards J, et al. (2021) Genome-Wide Association and Selective Sweep Studies Reveal the Complex Genetic Architecture of DMI Fungicide Resistance in Cercospora beticolaGenome Biology and Evolution 13: evab209. doi: 10.1093/gbe/evab209

Spanner R, Neubauer J, Heick TM, et al. (2021) Seed-Borne Cercospora beticola can Initiate Cercospora Leaf Spot from Sugar Beet (Beta vulgaris L.) Fruit Tissue. Phytopathology. doi: 10.1094/PHYTO-03-21-0113-R

Trkulja N, Ivanović Ž, Pfaf-Dolovac E, et al. (2013) Characterisation of benzimidazole resistance of Cercospora beticola in Serbia using PCR-based detection of resistance-associated mutations of the β-tubulin gene. European Journal of Plant Pathology 135(4): 889-902. doi: 10.1007/s10658-012-0135-x

Trkulja NR, Milosavljević AG, Mitrović MS, et al. (2017) Molecular and experimental evidence of multi-resistance of Cercospora beticola field populations to MBC, DMI and QoI fungicides. European Journal of Plant Pathology 149(4): 895–910. doi: 10.1007/s10658-017-1239-0

 

¿Cómo citar esta información para publicaciones?
Herbario Virtual. Cátedra de Fitopatología. Facultad de Agronomía de la Universidad de Buenos Aires. https://herbariofitopatologia.agro.uba.ar