Mycorrhiza (micorrizas)

.

Fungi  > Fungi incertae sedis > Mucoromycota  >  Glomeromycotina  >  Glomeromycetes  >  Glomerales  >  Glomeraceae  >

.

Funneliformis

Glomus

Rhizoglomus

Rhizophagus

Septoglomus

.

.

Fungi > Fungi incertae sedis > Mucoromycota > Glomeromycotina > Glomeromycetes > Glomerales > Claroideoglomeraceae

.

Claroideoglomus

.

.

Fungi > Fungi incertae sedis > Mucoromycota > Glomeromycotina > Glomeromycetes > Diversisporales > Acaulosporaceae

.

Acaulospora

.

.

Fungi > Fungi incertae sedis > Mucoromycota > Glomeromycotina > Glomeromycetes > Diversisporales > Diversisporales incertae sedis

.

Entrophosphora

.

.

Fungi > Fungi incertae sedis > Mucoromycota > Glomeromycotina > Glomeromycetes > Diversisporales > Gigasporaceae

.

Gigaspora

Scutellospora

.

.

Fungi > Fungi incertae sedis > Mucoromycota > Glomeromycotina > Glomeromycetes > Paraglomerales > Paraglomeraceae

.

Paraglomus

.

.

Fungi > Fungi incertae sedis > Mucoromycota > Glomeromycotina > Glomeromycetes > Archaeosporales > Ambisporaceae

.

> Ambispora

.

.

Fungi > Dikarya > Basidiomycota > AgaricomycotinaAgaricomycetesAgaricalesTricholomataceae  >

.

Laccaria bicolor

.

.

 

.

.

.

.

Bibliografía

Albornoz FE, Ryan MH, Bending GD, et al. (2021) Agricultural land-use favours Mucoromycotinian, but not Glomeromycotinian, arbuscular mycorrhizal fungi across ten biomes. New Phytologist. doi: 10.1111/nph.17780

AlbornozFE, Dixon KW, Lambers H (2021) Revisiting mycorrhizal dogmas: Are mycorrhizas really functioning as they are widely believed to do?. Soil Ecol. Lett. 3: 73–82. doi: 10.1007/s42832-020-0070-2

Bernardo L, Carletti P, Badeck FW, et al. (2019) Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiol Biochem. 137: 203-212. doi: 10.1016/j.plaphy.2019.02.007

Branco S, Schauster A, Liao H-L, Ruytinx J (2022) Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. New Phytol. doi: 10.1111/nph.18308

Cahanovitc R, Livne-Luzon S, Angel R, et al. (2022) Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks. ISME J. doi: 10.1038/s41396-022-01193-z

Chen B, Shen H, Li X, et al. (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant and Soil 261: 219–229. doi: 10.1023/B:PLSO.0000035538.09222.ff

Chitarra W, Pagliarani C, Maserti B, et al. (2016) Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Tomato Tolerance to Water Stress. Plant Physiology 171(2): 1009-1023. doi: 10.1104/pp.16.00307

Cope KR, Kafle A, Yakha JK, et al. (2022) Physiological and transcriptomic response of Medicago truncatula to colonization by high- or low-benefit arbuscular mycorrhizal fungi. Mycorrhiza. doi: 10.1007/s00572-022-01077-2

Coşkun F, Alptekin Y, Demir S (2022) Effects of arbuscular mycorrhizal fungi and salicylic acid on plant growth and the activity of antioxidative enzymes against wilt disease caused by Verticillium dahliae in pepper. Eur J Plant Pathol. doi: 10.1007/s10658-022-02596-6

Crosino A, Genre A (2022) Peace talks: symbiotic signaling molecules in arbuscular mycorrhizas and their potential application. Journal of Plant Interactions 17: 824-839. doi: 10.1080/17429145.2022.2108150

Crossay T, Antheaume C, Redecker D, et al. (2017) New method for the identification of arbuscular mycorrhizal fungi by proteomic-based biotyping of spores using MALDI-TOF-MS. Sci Rep 7: 14306. doi: 10.1038/s41598-017-14487-6

Cruz-Silva A, Figueiredo A, Sebastiana M (2021) First Insights into the Effect of Mycorrhizae on the Expression of Pathogen Effectors during the Infection of Grapevine with Plasmopara viticola. Sustainability 13(3):1226. doi: 10.3390/su13031226

de Vries J, Evers JB, Kuyper TW, van Ruijven J, Mommer L (2021) Mycorrhizal associations change root functionality: a 3D modelling study on competitive interactions between plants for light and nutrients. New Phytol. doi: 10.1111/nph.17435

Davison J, Vasar M, Sepp S-K, et al. (2022) Dominance, Diversity, and Niche Breadth in Arbuscular Mycorrhizal Fungal Communities. Ecology e3761. doi: 10.1002/ecy.3761

Dreischhoff S, Das IS, Jakobi M, et al. (2020) Local Responses and Systemic Induced Resistance Mediated by Ectomycorrhizal Fungi. Front. Plant Sci. 11: 590063. doi: 10.3389/fpls.2020.590063

Domka AM, Rozpaądek P and Turnau K (2019) Are Fungal Endophytes Merely Mycorrhizal Copycats? The Role of Fungal Endophytes in the Adaptation of Plants to Metal Toxicity. Front. Microbiol. 10:371. doi: 10.3389/fmicb.2019.00371

Duan S, Feng G, Limpens E, et al. (2024) Cross-kingdom nutrient exchange in the plant–arbuscular mycorrhizal fungus–bacterium continuum. Nat Rev Microbiol. doi:  10.1038/s41579-024-01073-7

Evangelisti E, Turner C, McDowell A, et al. (2021) Deep learning-based quantification of arbuscular mycorrhizal fungi in plant roots. New Phytol. doi: 10.1111/nph.17697

Faghihinia M, Jansa J (2022) Mycorrhiza governs plant-plant interactions through preferential allocation of shared nutritional resources: A triple (13C, 15N and 33P) labeling study. Front. Plant Sci. 13: 1047270. doi: 10.3389/fpls.2022.1047270

Faghihinia M, Jansa J, Halverson LJ, et al. (2023) Hyphosphere microbiome of arbuscular mycorrhizal fungi: a realm of unknowns. Biol Fertil Soils 59: 17–34. doi: 10.1007/s00374-022-01683-4

Fernandez-Gnecco GGegù LCovacevich F, et al. (2024) Alone as effective as together: AMF and Trichoderma inoculation boost maize performance but differentially shape soil and rhizosphere microbiota. J Sustain Agric Environ. 3116. doi: 10.1002/sae2.12091

Fontana A, Reichelt M, Hempel S, et al. (2009) The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. J Chem Ecol. 35(7): 833-843. doi: 10.1007/s10886-009-9654-0

Fu W, Chen B, Rillig MC, et al. (2021) Community response of arbuscular mycorrhizal fungi to extreme drought in a cold-temperate grassland. New Phytol. doi: 10.1111/nph.17692

Ganugi P, Masoni A, Pietramellara G, Benedettelli S (2019) A Review of Studies from the Last Twenty Years on Plant–Arbuscular Mycorrhizal Fungi Associations and Their Uses for Wheat Crops. Agronomy 9(12): 840. doi: 10.3390/agronomy9120840

Gille CE, Finnegan PM, Hayes PE, et al. (2023) Facilitative and competitive interactions between mycorrhizal and nonmycorrhizal plants in an extremely phosphorus-impoverished environment: role of ectomycorrhizal fungi and native oomycete pathogens in shaping species coexistence. New Phytol. doi: 10.1111/nph.19489

Gomes SIF, Fortuna MA, Bascompte J, Merckx VSFT (2022) Mycoheterotrophic plants preferentially target arbuscular mycorrhizal fungi that are highly connected to autotrophic plants. New Phytol. 235: 2034-2045. doi: 10.1111/nph.18310

González-Fuente M (2023) Who does not LYKe fungi? A plant receptor modulates defenses to facilitate the establishment of fungal symbioses. Plant Physiology: kiad134. doi: 10.1093/plphys/kiad134

Hackel J, Henkel TW, Moreau P-A, et al. (2022)  Biogeographic history of a large clade of ectomycorrhizal fungi, the Russulaceae, in the Neotropics and adjacent regions. New Phytol, 236: 698-713. doi: 10.1111/nph.18365

Hao Z, Fayolle L, van Tuinen D, et al. (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. J Exp Bot.  63(10): 3657-72. doi: 10.1093/jxb/ers046

Hestrin R, Weber PK, Pett-Ridge J, Lehmann J (2021) Plants and mycorrhizal symbionts acquire substantial soil nitrogen from gaseous ammonia transport. New Phytologist. Accepted Author Manuscript. doi: 10.1111/nph.17527

Hicks Pries CELankau RIngham GA, et al. (2023) Differences in Soil Organic Matter between EcM- and AM-Dominated Forests Depend on Tree and Fungal Identity. Ecology e3929. doi: 10.1002/ecy.3929

Hodge A, Helgason T, Fitter AH (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology 3: 267-273. doi: 10.1016/j.funeco.2010.02.002

Holland S, Roth R (2023) Extracellular Vesicles in the Arbuscular Mycorrhizal Symbiosis: Current Understanding and Future Perspectives. Molecular Plant-Microbe Interactions. doi: 10.1094/MPMI-09-22-0189-FI

Hui J, An X, Li Z, et al. (2022) The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots. Plant Cell. 34(10): 4066-4087. doi: 10.1093/plcell/koac225

Johnson AC, Pendergast TH, Chaluvadi S, et al. (2022) Identification of microRNAs responsive to arbuscular mycorrhizal fungi in Panicum virgatum (switchgrass). BMC Genomics 23: 688. doi: 10.1186/s12864-022-08797-x

Kakouridis A, Hagen JA, Kan MP, et al. (2022) Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytol. doi: 10.1111/nph.18281

Kaur S, Suseela V (2020) Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant Primary and Secondary Metabolome. Metabolites 10(8): 335. doi: 10.3390/metabo10080335

Kaur S, Campbell BJ, Suseela V (2022) Root metabolome of plant–arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal phenotype. New Phytologist. Accepted Author Manuscript. doi: 10.1111/nph.17994

Keller-Pearson M, Bortolazzo A, Willems L, et al. (2023) A dual transcriptomic approach reveals contrasting patterns of differential gene expression during drought in arbuscular mycorrhizal fungus and carrot. Mol Plant Microbe Interact. doi: 10.1094/MPMI-04-23-0038-R

Kokkoris V, Stefani F, Dalpé Y, et al. (2020) Nuclear Dynamics in the Arbuscular Mycorrhizal Fungi. Trends in Plant Science 25: 765-778. doi: 10.1016/j.tplants.2020.05.002

Koprivova A, Kopriva S (2022) Plant secondary metabolites altering root microbiome composition and function. Current Opinion in Plant Biology 67: 102227. doi: 10.1016/j.pbi.2022.102227

Koziol L, McKenna TP, Crews TE, Bever JD (2022) Native arbuscular mycorrhizal fungi promote native grassland diversity and suppress weeds 4 years following inoculation. Restor Ecol e13772. doi: 10.1111/rec.13772

Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytologist, 183: 212-223. doi: 10.1111/j.1469-8137.2009.02835.x

Kumar A, Lin H, Li Q, et al. (2022) Anthocyanin pigmentation as a quantitative visual marker for arbuscular mycorrhizal fungal colonization of Medicago truncatula roots. New Phytol. doi: 10.1111/nph.18504

Kumari A, Pathak PK, Loake GJ, Gupta KJ (2019) The PHYTOGLOBIN-NO Cycle Regulates Plant Mycorrhizal Symbiosis. Trends in Plant Science 24: 981-983. doi: 10.1016/j.tplants.2019.09.007

Lastovetsky OA, Caruso T, Brennan FP, et al.  (2022) Evidence of a selective and bi-directional relationship between arbuscular mycorrhizal fungal and bacterial communities co-inhabiting plant roots. Environ Microbiol. doi: 10.1111/1462-2920.16227

Lee EH, Eo JK, Ka KH, Eom AH (2013) Diversity of Arbuscular Mycorrhizal Fungi and their Roles in Ecosystems. Mycobiology 41(3): 121–125. doi: 10.5941/MYCO.2013.41.3.121

Li H, Ge Y, Zhang Z, et al. (2024) Arbuscular mycorrhizal conserved genes are recruited for ectomycorrhizal symbiosis. New Phytol. doi: 10.1111/nph.19657

Ling N, Wang T, Kuzyakov Y (2022) Rhizosphere bacteriome structure and functions. Nat Commun 13: 836. doi: 10.1038/s41467-022-28448-9

Maillard F, Fernandez CW, Mundra S, et al. (2021) Warming drives a ‘hummockification’ of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands. New Phytol. doi: 10.1111/nph.17755

Marqués-Gálvez JEBasso VKohler A, et al. (2022)  The establishment of Populus x Laccaria bicolor ectomycorrhiza requires the inactivation of MYC2 coordinated defense response with a key role for root terpene synthases. bioRxiv 2022.09.06.505662; doi: doi: 10.1101/2022.09.06.505662

Martin FM, van der Heijden MGA (2024) The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. New Phytol. doi: 10.1111/nph.19541

Massa N, Bona E, Novello G, et al. (2020) AMF communities associated to Vitis vinifera in an Italian vineyard subjected to integrated pest management at two different phenological stages. Scientific Reports 10: 9197. doi: 10.1038/s41598-020-66067-w

Meena KK, Sorty AM, Bitla UM, et al. (2017) Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. Front. Plant Sci. 8: 172. doi: 10.3389/fpls.2017.00172

Mongès A, Yaakoub H, Bidon B, et al. (2023) Are Histidine Kinases of Arbuscular Mycorrhizal Fungi Involved in the Response to Ethylene and Cytokinins? Mol Plant Microbe Interact. 36(10): 656-665. doi: 10.1094/MPMI-05-23-0056-R

Nasir F, Bahadur A, Lin X, et al. (2020) Novel insights into host receptors and receptor-mediated signaling that regulate arbuscular mycorrhizal symbiosis. J. Exp. Bot. 72: 1546–1557. doi: 10.1093/jxb/eraa538

Nogales A, Ribeiro H, Nogales-Bueno J, et al. (2020) Response of Mycorrhizal ’Touriga Nacional‘ Variety Grapevines to High Temperatures Measured by Calorespirometry and Near-Infrared Spectroscopy. Plants 9(11): 1499. doi: 10.3390/plants9111499

Puy J, Carmona CP, Hiiesalu I, et al. (2021) Mycorrhizal symbiosis alleviates plant water deficit within and across generations via phenotypic plasticity. J Ecol. Accepted Author Manuscript. doi: 10.1111/1365-2745.13810

Robbins C, Cruz Corella J, Aletti C, et al. (2021) Generation of unequal nuclear genotype proportions in Rhizophagus irregularis progeny causes allelic imbalance in gene transcription. New Phytol. doi: 10.1111/nph.17530

Rodriguez-Morelos VH, Calonne-Salmon M, Declerck S, et al. Anastomosis within and between networks of Rhizophagus irregularis MUCL 41833 is influenced by mode of action and concentration of fungicides, 01 August 2022, PREPRINT (Version 1) available at Research Square. doi: 10.21203/rs.3.rs-1901367/v1

Sahraei SE, Sánchez-García M, Montoliu-Nerin M, et al. (2022) Whole genome analyses based on single, field collected spores of the arbuscular mycorrhizal fungus Funneliformis geosporum. Mycorrhiza 32: 361–371. doi: 10.1007/s00572-022-01091-4

Salomon MJ, Watts-Williams SJ, McLaughlin MJ, et al. (2022) Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi. iScience. doi: 10.1016/j.isci.2022.104636

Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69(1): 112-46. doi: 10.1016/j.phytochem.2007.06.032

Schreiner RP(2007) Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Applied Soil Ecology 36: 205-215. https://doi.org/10.1016/j.apsoil.2007.03.002

Serghi EU, Kokkoris V, Cornell C, et al. (2021) Homo- and Dikaryons of the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Differ in Life History Strategy. Front. Plant Sci. 12: 715377. doi: 10.3389/fpls.2021.715377

Sharma S, Anand G, Singh N and Kapoor R (2017) Arbuscular Mycorrhiza Augments Arsenic Tolerance in Wheat (Triticum aestivum L.) by Strengthening Antioxidant Defense System and Thiol Metabolism. Front. Plant Sci. 8: 906. doi: 10.3389/fpls.2017.00906

Shi J, Zhao B, Zheng S (2021) A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell. doi: 10.1016/j.cell.2021.09.030

Sisti D, Donati Zeppa S, Amicucci A, et al. (2022) The bianchetto truffle (Tuber borchii) a lead-resistant ectomycorrhizal fungus increases Quercus cerris phytoremediation potential. Environ Microbiol. doi: 10.1111/1462-2920.16273

Spagnoletti FN, Carmona M, Balestrasse K, et al. (2021) The arbuscular mycorrhizal fungus Rhizophagus intraradices reduces the root rot caused by Fusarium pseudograminearum in wheat. Rhizosphere 19: 100369. doi: 10.1016/j.rhisph.2021.100369

Strassert JFH, Monaghan MT (2022) Phylogenomic insights into the early diversification of fungi. Current Biology. doi: 10.1016/j.cub.2022.06.057

Stratton CA, Ray S, Bradley BA, et al. (2022) Nutrition vs association: plant defenses are altered by arbuscular mycorrhizal fungi association not by nutritional provisioning alone. BMC Plant Biol 22: 400. doi: 10.1186/s12870-022-03795-3

Sun M, Chen S, Kurle JE (2022) Interactive Effects of Soybean Cyst Nematode, Arbuscular-Mycorrhizal Fungi, and Soil pH on Chlorophyll Content and Plant Growth of Soybean. Phytobiomes Journal 6: 95-105. doi: 10.1094/PBIOMES-03-21-0024-R

Suz LM, Bidartondo MI, van der Linde S, Kuyper TW (2021) Ectomycorrhizas and tipping points in forest ecosystems. New Phytol. doi: 10.1111/nph.17547

Thirkell TJGrimmer MJames Let al. (2022Variation in mycorrhizal growth response among a spring wheat mapping population shows potential to breed for symbiotic benefit. Food and Energy Security 00: e370.doi: 10.1002/fes3.370

Trouvelot S, Bonneau L, Redecker D, et al. (2015) Arbuscular mycorrhiza symbiosis in viticulture: a review. Agron. Sustain. Dev. 35: 1449–1467 (2015). doi: 10.1007/s13593-015-0329-7

Velásquez A, Vega-Celedón P, Fiaschi G, et al. (2020) Responses of Vitis vinifera cv. Cabernet Sauvignon roots to the arbuscular mycorrhizal fungus Funneliformis mosseae and the plant growth-promoting rhizobacterium Ensifer meliloti include changes in volatile organic compounds. Mycorrhiza 30(1): 161-170. doi: 10.1007/s00572-020-00933-3

Větrovský T, Kolaříková Z, Lepinay C, et al. (2023) GlobalAMFungi: a global database of arbuscular mycorrhizal fungal occurrences from high-throughput sequencing metabarcoding studies. New Phytol. doi: 10.1111/nph.19283

Wang W, Shi J, Xie W (2017) Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis. Molecular Plant 10: 1147-1158. doi: 10.1016/j.molp.2017.07.012

Wang W, Zhong Z, Wang Q, et al. (2017) Glomalin contributed more to carbon, nutrients in deeper soils, and differently associated with climates and soil properties in vertical profiles. Sci Rep 7: 13003. doi: 10.1038/s41598-017-12731-7

Wang X, Feng H, Wang Y (2021) Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia–legume symbiosis. Molecular Plant 14: 503-516. doi: 10.1016/j.molp.2020.12.002

Wulf KWang CPlagaro TH, et al. (2023) CLE11 and CLE10 Suppress Mycorrhizal Colonisation in Tomato. bioRxiv 2023.02.21.529440; doi: 10.1101/2023.02.21.529440

Xavier Martins WF, Rodrigues BF (2020) Identification of Dominant Arbuscular Mycorrhizal Fungi in Different Rice Ecosystems. Agric Res 9: 46–55. doi: 10.1007/s40003-019-00404-y

Xie K, Ren Y, Chen A, et al. (2022) Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi. Journal of Plant Physiology 269: 153591. doi: 10.1016/j.jplph.2021.153591

Zhang M, Shi Z, Yang M, et al. (2021) Molecular Diversity and Distribution of Arbuscular Mycorrhizal Fungi at Different Elevations in Mt. Taibai of Qinling Mountain. Front. Microbiol. 12: 609386. doi: 10.3389/fmicb.2021.609386

Zhang F, Labourel A, Haon M (2021) The ectomycorrhizal basidiomycete Laccaria bicolor releases a GH28 polygalacturonase that plays a key role in symbiosis establishment. bioRxiv 2021.09.24.461608; doi: 10.1101/2021.09.24.461608

Zhang L, Zhou J, George TS (2022) Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends in Plant Science. doi:  10.1016/j.tplants.2021.10.008

¿Cómo citar esta información para publicaciones?
Herbario Virtual. Cátedra de Fitopatología. Facultad de Agronomía de la Universidad de Buenos Aires. https://herbariofitopatologia.agro.uba.ar