.
Fungi > Fungi incertae sedis > Mucoromycota > Glomeromycotina > Glomeromycetes > Glomerales > Glomeraceae >
.
> Glomus
.
.
Fungi > Fungi incertae sedis > Mucoromycota > Glomeromycotina > Glomeromycetes > Glomerales > Claroideoglomeraceae
.
.
.
Fungi > Fungi incertae sedis > Mucoromycota > Glomeromycotina > Glomeromycetes > Diversisporales > Acaulosporaceae
.
.
.
Fungi > Fungi incertae sedis > Mucoromycota > Glomeromycotina > Glomeromycetes > Diversisporales > Diversisporales incertae sedis
.
.
.
Fungi > Fungi incertae sedis > Mucoromycota > Glomeromycotina > Glomeromycetes > Diversisporales > Gigasporaceae
.
.
.
Fungi > Fungi incertae sedis > Mucoromycota > Glomeromycotina > Glomeromycetes > Paraglomerales > Paraglomeraceae
.
.
.
Fungi > Fungi incertae sedis > Mucoromycota > Glomeromycotina > Glomeromycetes > Archaeosporales > Ambisporaceae
.
.
.
Fungi > Dikarya > Basidiomycota > Agaricomycotina > Agaricomycetes > Agaricales > Tricholomataceae >
.
.
.
.
.
.
.
Bibliografía
Albornoz FE, Ryan MH, Bending GD, et al. (2021) Agricultural land-use favours Mucoromycotinian, but not Glomeromycotinian, arbuscular mycorrhizal fungi across ten biomes. New Phytologist. doi: 10.1111/nph.17780
AlbornozFE, Dixon KW, Lambers H (2021) Revisiting mycorrhizal dogmas: Are mycorrhizas really functioning as they are widely believed to do?. Soil Ecol. Lett. 3: 73–82. doi: 10.1007/s42832-020-0070-2
Bernardo L, Carletti P, Badeck FW, et al. (2019) Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiol Biochem. 137: 203-212. doi: 10.1016/j.plaphy.2019.02.007
Branco S, Schauster A, Liao H-L, Ruytinx J (2022) Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. New Phytol. doi: 10.1111/nph.18308
Cahanovitc R, Livne-Luzon S, Angel R, et al. (2022) Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks. ISME J. doi: 10.1038/s41396-022-01193-z
Chen B, Shen H, Li X, et al. (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant and Soil 261: 219–229. doi: 10.1023/B:PLSO.0000035538.09222.ff
Chitarra W, Pagliarani C, Maserti B, et al. (2016) Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Tomato Tolerance to Water Stress. Plant Physiology 171(2): 1009-1023. doi: 10.1104/pp.16.00307
Cope KR, Kafle A, Yakha JK, et al. (2022) Physiological and transcriptomic response of Medicago truncatula to colonization by high- or low-benefit arbuscular mycorrhizal fungi. Mycorrhiza. doi: 10.1007/s00572-022-01077-2
Coşkun F, Alptekin Y, Demir S (2022) Effects of arbuscular mycorrhizal fungi and salicylic acid on plant growth and the activity of antioxidative enzymes against wilt disease caused by Verticillium dahliae in pepper. Eur J Plant Pathol. doi: 10.1007/s10658-022-02596-6
Crosino A, Genre A (2022) Peace talks: symbiotic signaling molecules in arbuscular mycorrhizas and their potential application. Journal of Plant Interactions 17: 824-839. doi: 10.1080/17429145.2022.2108150
Crossay T, Antheaume C, Redecker D, et al. (2017) New method for the identification of arbuscular mycorrhizal fungi by proteomic-based biotyping of spores using MALDI-TOF-MS. Sci Rep 7: 14306. doi: 10.1038/s41598-017-14487-6
Cruz-Silva A, Figueiredo A, Sebastiana M (2021) First Insights into the Effect of Mycorrhizae on the Expression of Pathogen Effectors during the Infection of Grapevine with Plasmopara viticola. Sustainability 13(3):1226. doi: 10.3390/su13031226
de Vries J, Evers JB, Kuyper TW, van Ruijven J, Mommer L (2021) Mycorrhizal associations change root functionality: a 3D modelling study on competitive interactions between plants for light and nutrients. New Phytol. doi: 10.1111/nph.17435
Davison J, Vasar M, Sepp S-K, et al. (2022) Dominance, Diversity, and Niche Breadth in Arbuscular Mycorrhizal Fungal Communities. Ecology e3761. doi: 10.1002/ecy.3761
Dreischhoff S, Das IS, Jakobi M, et al. (2020) Local Responses and Systemic Induced Resistance Mediated by Ectomycorrhizal Fungi. Front. Plant Sci. 11: 590063. doi: 10.3389/fpls.2020.590063
Domka AM, Rozpaądek P and Turnau K (2019) Are Fungal Endophytes Merely Mycorrhizal Copycats? The Role of Fungal Endophytes in the Adaptation of Plants to Metal Toxicity. Front. Microbiol. 10:371. doi: 10.3389/fmicb.2019.00371
Duan S, Feng G, Limpens E, et al. (2024) Cross-kingdom nutrient exchange in the plant–arbuscular mycorrhizal fungus–bacterium continuum. Nat Rev Microbiol. doi: 10.1038/s41579-024-01073-7
Evangelisti E, Turner C, McDowell A, et al. (2021) Deep learning-based quantification of arbuscular mycorrhizal fungi in plant roots. New Phytol. doi: 10.1111/nph.17697
Faghihinia M, Jansa J (2022) Mycorrhiza governs plant-plant interactions through preferential allocation of shared nutritional resources: A triple (13C, 15N and 33P) labeling study. Front. Plant Sci. 13: 1047270. doi: 10.3389/fpls.2022.1047270
Faghihinia M, Jansa J, Halverson LJ, et al. (2023) Hyphosphere microbiome of arbuscular mycorrhizal fungi: a realm of unknowns. Biol Fertil Soils 59: 17–34. doi: 10.1007/s00374-022-01683-4
2024) Alone as effective as together: AMF and Trichoderma inoculation boost maize performance but differentially shape soil and rhizosphere microbiota. J Sustain Agric Environ. 3: 1–16. doi: 10.1002/sae2.12091
, , , et al. (Fontana A, Reichelt M, Hempel S, et al. (2009) The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. J Chem Ecol. 35(7): 833-843. doi: 10.1007/s10886-009-9654-0
Fu W, Chen B, Rillig MC, et al. (2021) Community response of arbuscular mycorrhizal fungi to extreme drought in a cold-temperate grassland. New Phytol. doi: 10.1111/nph.17692
Ganugi P, Masoni A, Pietramellara G, Benedettelli S (2019) A Review of Studies from the Last Twenty Years on Plant–Arbuscular Mycorrhizal Fungi Associations and Their Uses for Wheat Crops. Agronomy 9(12): 840. doi: 10.3390/agronomy9120840
Gille CE, Finnegan PM, Hayes PE, et al. (2023) Facilitative and competitive interactions between mycorrhizal and nonmycorrhizal plants in an extremely phosphorus-impoverished environment: role of ectomycorrhizal fungi and native oomycete pathogens in shaping species coexistence. New Phytol. doi: 10.1111/nph.19489
Gomes SIF, Fortuna MA, Bascompte J, Merckx VSFT (2022) Mycoheterotrophic plants preferentially target arbuscular mycorrhizal fungi that are highly connected to autotrophic plants. New Phytol. 235: 2034-2045. doi: 10.1111/nph.18310
González-Fuente M (2023) Who does not LYKe fungi? A plant receptor modulates defenses to facilitate the establishment of fungal symbioses. Plant Physiology: kiad134. doi: 10.1093/plphys/kiad134
Hackel J, Henkel TW, Moreau P-A, et al. (2022) Biogeographic history of a large clade of ectomycorrhizal fungi, the Russulaceae, in the Neotropics and adjacent regions. New Phytol, 236: 698-713. doi: 10.1111/nph.18365
Hao Z, Fayolle L, van Tuinen D, et al. (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. J Exp Bot. 63(10): 3657-72. doi: 10.1093/jxb/ers046
Hestrin R, Weber PK, Pett-Ridge J, Lehmann J (2021) Plants and mycorrhizal symbionts acquire substantial soil nitrogen from gaseous ammonia transport. New Phytologist. Accepted Author Manuscript. doi: 10.1111/nph.17527
2023) Differences in Soil Organic Matter between EcM- and AM-Dominated Forests Depend on Tree and Fungal Identity. Ecology e3929. doi: 10.1002/ecy.3929
, , , et al. (Hodge A, Helgason T, Fitter AH (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology 3: 267-273. doi: 10.1016/j.funeco.2010.02.002
Holland S, Roth R (2023) Extracellular Vesicles in the Arbuscular Mycorrhizal Symbiosis: Current Understanding and Future Perspectives. Molecular Plant-Microbe Interactions. doi: 10.1094/MPMI-09-22-0189-FI
Hui J, An X, Li Z, et al. (2022) The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots. Plant Cell. 34(10): 4066-4087. doi: 10.1093/plcell/koac225
Johnson AC, Pendergast TH, Chaluvadi S, et al. (2022) Identification of microRNAs responsive to arbuscular mycorrhizal fungi in Panicum virgatum (switchgrass). BMC Genomics 23: 688. doi: 10.1186/s12864-022-08797-x
Kakouridis A, Hagen JA, Kan MP, et al. (2022) Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytol. doi: 10.1111/nph.18281
Kaur S, Suseela V (2020) Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant Primary and Secondary Metabolome. Metabolites 10(8): 335. doi: 10.3390/metabo10080335
Kaur S, Campbell BJ, Suseela V (2022) Root metabolome of plant–arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal phenotype. New Phytologist. Accepted Author Manuscript. doi: 10.1111/nph.17994
Keller-Pearson M, Bortolazzo A, Willems L, et al. (2023) A dual transcriptomic approach reveals contrasting patterns of differential gene expression during drought in arbuscular mycorrhizal fungus and carrot. Mol Plant Microbe Interact. doi: 10.1094/MPMI-04-23-0038-R
Kokkoris V, Stefani F, Dalpé Y, et al. (2020) Nuclear Dynamics in the Arbuscular Mycorrhizal Fungi. Trends in Plant Science 25: 765-778. doi: 10.1016/j.tplants.2020.05.002
Koprivova A, Kopriva S (2022) Plant secondary metabolites altering root microbiome composition and function. Current Opinion in Plant Biology 67: 102227. doi: 10.1016/j.pbi.2022.102227
Koziol L, McKenna TP, Crews TE, Bever JD (2022) Native arbuscular mycorrhizal fungi promote native grassland diversity and suppress weeds 4 years following inoculation. Restor Ecol e13772. doi: 10.1111/rec.13772
Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytologist, 183: 212-223. doi: 10.1111/j.1469-8137.2009.02835.x
Kumar A, Lin H, Li Q, et al. (2022) Anthocyanin pigmentation as a quantitative visual marker for arbuscular mycorrhizal fungal colonization of Medicago truncatula roots. New Phytol. doi: 10.1111/nph.18504
Kumari A, Pathak PK, Loake GJ, Gupta KJ (2019) The PHYTOGLOBIN-NO Cycle Regulates Plant Mycorrhizal Symbiosis. Trends in Plant Science 24: 981-983. doi: 10.1016/j.tplants.2019.09.007
Lastovetsky OA, Caruso T, Brennan FP, et al. (2022) Evidence of a selective and bi-directional relationship between arbuscular mycorrhizal fungal and bacterial communities co-inhabiting plant roots. Environ Microbiol. doi: 10.1111/1462-2920.16227
Lee EH, Eo JK, Ka KH, Eom AH (2013) Diversity of Arbuscular Mycorrhizal Fungi and their Roles in Ecosystems. Mycobiology 41(3): 121–125. doi: 10.5941/MYCO.2013.41.3.121
Li H, Ge Y, Zhang Z, et al. (2024) Arbuscular mycorrhizal conserved genes are recruited for ectomycorrhizal symbiosis. New Phytol. doi: 10.1111/nph.19657
Ling N, Wang T, Kuzyakov Y (2022) Rhizosphere bacteriome structure and functions. Nat Commun 13: 836. doi: 10.1038/s41467-022-28448-9
Maillard F, Fernandez CW, Mundra S, et al. (2021) Warming drives a ‘hummockification’ of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands. New Phytol. doi: 10.1111/nph.17755
, , , et al. (2022) The establishment of Populus x Laccaria bicolor ectomycorrhiza requires the inactivation of MYC2 coordinated defense response with a key role for root terpene synthases. bioRxiv 2022.09.06.505662; doi: doi:Martin FM, van der Heijden MGA (2024) The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. New Phytol. doi: 10.1111/nph.19541
Massa N, Bona E, Novello G, et al. (2020) AMF communities associated to Vitis vinifera in an Italian vineyard subjected to integrated pest management at two different phenological stages. Scientific Reports 10: 9197. doi: 10.1038/s41598-020-66067-w
Meena KK, Sorty AM, Bitla UM, et al. (2017) Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. Front. Plant Sci. 8: 172. doi: 10.3389/fpls.2017.00172
Mongès A, Yaakoub H, Bidon B, et al. (2023) Are Histidine Kinases of Arbuscular Mycorrhizal Fungi Involved in the Response to Ethylene and Cytokinins? Mol Plant Microbe Interact. 36(10): 656-665. doi: 10.1094/MPMI-05-23-0056-R
Nasir F, Bahadur A, Lin X, et al. (2020) Novel insights into host receptors and receptor-mediated signaling that regulate arbuscular mycorrhizal symbiosis. J. Exp. Bot. 72: 1546–1557. doi: 10.1093/jxb/eraa538
Nogales A, Ribeiro H, Nogales-Bueno J, et al. (2020) Response of Mycorrhizal ’Touriga Nacional‘ Variety Grapevines to High Temperatures Measured by Calorespirometry and Near-Infrared Spectroscopy. Plants 9(11): 1499. doi: 10.3390/plants9111499
Puy J, Carmona CP, Hiiesalu I, et al. (2021) Mycorrhizal symbiosis alleviates plant water deficit within and across generations via phenotypic plasticity. J Ecol. Accepted Author Manuscript. doi: 10.1111/1365-2745.13810
Robbins C, Cruz Corella J, Aletti C, et al. (2021) Generation of unequal nuclear genotype proportions in Rhizophagus irregularis progeny causes allelic imbalance in gene transcription. New Phytol. doi: 10.1111/nph.17530
Rodriguez-Morelos VH, Calonne-Salmon M, Declerck S, et al. Anastomosis within and between networks of Rhizophagus irregularis MUCL 41833 is influenced by mode of action and concentration of fungicides, 01 August 2022, PREPRINT (Version 1) available at Research Square. doi: 10.21203/rs.3.rs-1901367/v1
Sahraei SE, Sánchez-García M, Montoliu-Nerin M, et al. (2022) Whole genome analyses based on single, field collected spores of the arbuscular mycorrhizal fungus Funneliformis geosporum. Mycorrhiza 32: 361–371. doi: 10.1007/s00572-022-01091-4
Salomon MJ, Watts-Williams SJ, McLaughlin MJ, et al. (2022) Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi. iScience. doi: 10.1016/j.isci.2022.104636
Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69(1): 112-46. doi: 10.1016/j.phytochem.2007.06.032
Schreiner RP(2007) Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Applied Soil Ecology 36: 205-215. https://doi.org/10.1016/j.apsoil.2007.03.002
Serghi EU, Kokkoris V, Cornell C, et al. (2021) Homo- and Dikaryons of the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Differ in Life History Strategy. Front. Plant Sci. 12: 715377. doi: 10.3389/fpls.2021.715377
Sharma S, Anand G, Singh N and Kapoor R (2017) Arbuscular Mycorrhiza Augments Arsenic Tolerance in Wheat (Triticum aestivum L.) by Strengthening Antioxidant Defense System and Thiol Metabolism. Front. Plant Sci. 8: 906. doi: 10.3389/fpls.2017.00906
Shi J, Zhao B, Zheng S (2021) A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell. doi: 10.1016/j.cell.2021.09.030
Sisti D, Donati Zeppa S, Amicucci A, et al. (2022) The bianchetto truffle (Tuber borchii) a lead-resistant ectomycorrhizal fungus increases Quercus cerris phytoremediation potential. Environ Microbiol. doi: 10.1111/1462-2920.16273
Spagnoletti FN, Carmona M, Balestrasse K, et al. (2021) The arbuscular mycorrhizal fungus Rhizophagus intraradices reduces the root rot caused by Fusarium pseudograminearum in wheat. Rhizosphere 19: 100369. doi: 10.1016/j.rhisph.2021.100369
Strassert JFH, Monaghan MT (2022) Phylogenomic insights into the early diversification of fungi. Current Biology. doi: 10.1016/j.cub.2022.06.057
Stratton CA, Ray S, Bradley BA, et al. (2022) Nutrition vs association: plant defenses are altered by arbuscular mycorrhizal fungi association not by nutritional provisioning alone. BMC Plant Biol 22: 400. doi: 10.1186/s12870-022-03795-3
Sun M, Chen S, Kurle JE (2022) Interactive Effects of Soybean Cyst Nematode, Arbuscular-Mycorrhizal Fungi, and Soil pH on Chlorophyll Content and Plant Growth of Soybean. Phytobiomes Journal 6: 95-105. doi: 10.1094/PBIOMES-03-21-0024-R
Suz LM, Bidartondo MI, van der Linde S, Kuyper TW (2021) Ectomycorrhizas and tipping points in forest ecosystems. New Phytol. doi: 10.1111/nph.17547
2022) Variation in mycorrhizal growth response among a spring wheat mapping population shows potential to breed for symbiotic benefit. Food and Energy Security 00: e370.doi: 10.1002/fes3.370
, , , (Trouvelot S, Bonneau L, Redecker D, et al. (2015) Arbuscular mycorrhiza symbiosis in viticulture: a review. Agron. Sustain. Dev. 35: 1449–1467 (2015). doi: 10.1007/s13593-015-0329-7
Velásquez A, Vega-Celedón P, Fiaschi G, et al. (2020) Responses of Vitis vinifera cv. Cabernet Sauvignon roots to the arbuscular mycorrhizal fungus Funneliformis mosseae and the plant growth-promoting rhizobacterium Ensifer meliloti include changes in volatile organic compounds. Mycorrhiza 30(1): 161-170. doi: 10.1007/s00572-020-00933-3
Větrovský T, Kolaříková Z, Lepinay C, et al. (2023) GlobalAMFungi: a global database of arbuscular mycorrhizal fungal occurrences from high-throughput sequencing metabarcoding studies. New Phytol. doi: 10.1111/nph.19283
Wang W, Shi J, Xie W (2017) Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis. Molecular Plant 10: 1147-1158. doi: 10.1016/j.molp.2017.07.012
Wang W, Zhong Z, Wang Q, et al. (2017) Glomalin contributed more to carbon, nutrients in deeper soils, and differently associated with climates and soil properties in vertical profiles. Sci Rep 7: 13003. doi: 10.1038/s41598-017-12731-7
Wang X, Feng H, Wang Y (2021) Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia–legume symbiosis. Molecular Plant 14: 503-516. doi: 10.1016/j.molp.2020.12.002
, , , et al. (2023) CLE11 and CLE10 Suppress Mycorrhizal Colonisation in Tomato. bioRxiv 2023.02.21.529440; doi:Xavier Martins WF, Rodrigues BF (2020) Identification of Dominant Arbuscular Mycorrhizal Fungi in Different Rice Ecosystems. Agric Res 9: 46–55. doi: 10.1007/s40003-019-00404-y
Xie K, Ren Y, Chen A, et al. (2022) Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi. Journal of Plant Physiology 269: 153591. doi: 10.1016/j.jplph.2021.153591
Zhang M, Shi Z, Yang M, et al. (2021) Molecular Diversity and Distribution of Arbuscular Mycorrhizal Fungi at Different Elevations in Mt. Taibai of Qinling Mountain. Front. Microbiol. 12: 609386. doi: 10.3389/fmicb.2021.609386
Zhang F, Labourel A, Haon M (2021) The ectomycorrhizal basidiomycete Laccaria bicolor releases a GH28 polygalacturonase that plays a key role in symbiosis establishment. bioRxiv 2021.09.24.461608; doi: 10.1101/2021.09.24.461608
Zhang L, Zhou J, George TS (2022) Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends in Plant Science. doi: 10.1016/j.tplants.2021.10.008