Trichoderma

.

Fungi > DikaryaAscomycotaPezizomycotina > Sordariomycetes > Hypocreales > Hypocreaceae

.

Trichoderma  afarasin P. Chaverri & F.B. Rocha, 2015

Trichoderma  afroharzianum P. Chaverri, F.B. Rocha, Degenkolb & I. Druzhinina, 2015

Trichoderma aggressivum f. europaeum Samuels & W. Gams, 2002

Trichoderma asperellum Samuels, Lieckf. & Nirenberg 1999

Trichoderma atroviride Bissett, 1984

Trichoderma  endophyticum F.B. Rocha, Samuels & P. Chaverri, 2015

Trichoderma ghanense  Yoshim. Doi, Y. Abe & Sugiyama, 1987

Trichoderma  guizhouense Q.R. Li, E.H.C. McKenzie & Yong Wang, 2012

Trichoderma harzianum Rifai, 1969

Trichoderma  neotropicale P. Chaverri & F.B. Rocha, 2015

Trichoderma polysporum  (Link) Rifai, 1969

Trichoderma virens (J.H. Miller, Giddens & A.A. Foster) Arx, 1987

Trichoderma viride  Persoon, 1794 Pers., 1794

 

 

.

.

Trichoderma se aisló por primera vez en 1794 del suelo y materia orgánica en descomposición (Persoon, 1794).

.

.

.

Bibliografía

Alfiky A, Abou-Mansour E, de Vrieze M, et al. (2023) Newly isolated Trichoderma spp. show multifaceted biocontrol strategies to inhibit potato late blight causal agent Phytophthora infestans both in vitro and in planta. Phytobiomes Journal. doi: 10.1094/PBIOMES-01-23-0002-R

Agostini RB, Ariel F, Rius SP, et al. (2023) Trichoderma root colonization in maize triggers epigenetic changes in genes related to the jasmonic and salicylic acid pathways that prime defenses against Colletotrichum graminicola leaf infection. J Exp Bot. 74(6): 2016-2028. doi: 10.1093/jxb/erac518

Alukumbura AS, Bigi A, Sarrocco S, et al. (2022) Minimal impacts on the wheat microbiome when Trichoderma gamsii T6085 is applied as a biocontrol agent to manage Fusarium head blight disease. Front. Microbiol. 13: 972016. doi: 10.3389/fmicb.2022.972016

Amerio N, Castrillo ML, Bich GA, et al. (2020) Trichoderma en la Argentina: Estado del arte. Ecología Austral 30: 001-165. doi: 10.25260/EA.20.30.1.0.945

Barrera VA, Iannone L, Romero AI, Chaverri P (2021) Expanding the Trichoderma harzianum species complex: Three new species from Argentine natural and cultivated ecosystems. Mycologia 2: 1-20. doi: 10.1080/00275514.2021.1947641

Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7:249-260. Link

Benhamou N, Chet I (1993) Hyphal Interactions Between Trichoderma harzianum and Rhizoctonia solani: Ultrastructure and Gold Cytochemistry of the Mycoparasitic Process. Phytopathology 83:1062-1071. doi: 10.1094/Phyto-83-1062

Coninck E, Scauflaire J, Gollier M, et al. (2020) Trichoderma atroviride as a promising biocontrol agent in seed coating for reducing Fusarium damping-off on maize. J Appl Microbiol, 129: 637-651. doi: 10.1111/jam.14641

Conte ED, Magro TD, Dal Bem LC, et al. (2022) Use of Trichoderma spp. in no-tillage system: Effect on soil and soybean crop. Biological Control 171: 104941. doi: 10.1016/j.biocontrol.2022.104941

Das MM, Aguilar CN, Haridas M, Sabu A (2021) Production of bio-fungicide, Trichoderma harzianum CH1 under solid-state fermentation using coffee husk. Bioresource Technology Reports 15: 100708. doi: 10.1016/j.biteb.2021.100708

Djonovic S, Pozo MJ, Dangott LJ, et al. (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol. Plant Microbe Interact. 19: 838–853. doi: 10.1094/MPMI-19-0838

Djonovic S, Vargas WA, Kolomiets MV, et al. (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol. 145: 875–889. doi: 10.1104/pp.107.103689

Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, et al. (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol. 2011 Sep 16;9(10):749-59. doi: 10.1038/nrmicro2637. Erratum in: Nat Rev Microbiol. 9(12): 896. doi: 10.1038/nrmicro2637

El-Hasan, A., Walker, F., Schöne, J. et al. (2009) Detection of viridiofungin A and other antifungal metabolites excreted by Trichoderma harzianum active against different plant pathogens. Eur J Plant Pathol 124, 457–470. doi: 10.1007/s10658-009-9433-3

Geng L, Fu Y, Peng X, et al. (2022) Biocontrol potential of Trichoderma harzianum against Botrytis cinerea in tomato plants. Biological Control: 105019. doi: 10.1016/j.biocontrol.2022.105019

Giordano DF, Pastor NA, Rouws LFM, et al. (2023) Trichoderma harzianum ITEM 3636 colonizes peanut roots as an endophyte and protects the plants against late leaf spot. Symbiosis 89: 337–352. doi: 10.1007/s13199-023-00913-z

González-Fuente M (2023) Who does not LYKe fungi? A plant receptor modulates defenses to facilitate the establishment of fungal symbioses. Plant Physiology: kiad134. doi: 10.1093/plphys/kiad134

Guzmán-Guzmán P, Porras-Troncoso MD, Olmedo-Monfil V, Herrera-Estrella A (2019) Trichoderma Species: Versatile Plant Symbionts. Phytopathology 109(1): 6-16. doi: 10.1094/PHYTO-07-18-0218-RVW

Harman GE (2006) Overview of Mechanisms and Uses of Trichoderma spp. Phytopathology 96(2): 190-194. doi: 10.1094/PHYTO-96-0190

Hashem M, Mostafa YS, Alamri S, et al. (2021) Exploitation of Agro-Industrial Residues for the Formulation of a New Active and Cost Effective Biofungicide to Control the Root Rot of Vegetable Crops. Sustainability 13(16): 9254. doi: 10.3390/su13169254

Jamil A (2021) Antifungal and plant growth promoting activity of Trichoderma spp. against Fusarium oxysporum f. sp. lycopersici colonizing tomato. Journal of Plant Protection Research. 61(3): 243-253. doi: 10.24425/jppr.2021.137950

Khan RAA, Najeeb S, Mao Z, et al. (2020) Bioactive Secondary Metabolites from Trichoderma spp. against Phytopathogenic Bacteria and Root-Knot Nematode. Microorganisms 8(3): 401. doi: 10.3390/microorganisms8030401

Khan RAA, Najeeb S, Hussain S, et al. (2020) Bioactive Secondary Metabolites from Trichoderma spp. against Phytopathogenic Fungi. Microorganisms 8(6): 817. doi: 10.3390/microorganisms8060817

Kolombet LV, Zhigletsova SK, Kosareva NI, et al. (2008) Development of an extended shelf-life, liquid formulation of the biofungicide Trichoderma asperellum. World J Microbiol Biotechnol 24: 123–131. doi: 10.1007/s11274-007-9449-9

Kubicek CP, Steindorff AS, Chenthamara K, et al. (2019) Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics 20: 485. doi: 10.1186/s12864-019-5680-7

Larran S, Simón MR, Santamarina MP, et al. (2023) Endophytic Trichoderma strains increase soya bean growth and promote charcoal rot control. Journal of the Saudi Society of Agricultural Sciences. doi: 10.1016/j.jssas.2023.03.005

Leibman-Markus M, Gupta R, Pizarro L, Bar M (2023) The LeEIX Locus Determines Pathogen Resistance in Tomato. Phytopathology: PHYTO01220035R. doi: 10.1094/PHYTO-01-22-0035-R

Locatelli GO, dos Santos GF, Botelho PS, et al. (2018) Development of Trichoderma sp. formulations in encapsulated granules (CG) and evaluation of conidia shelf-life. Biological Control 117: 21-29. doi: 10.1016/j.biocontrol.2017.08.020

Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: From’omics to the field. Ann. Rev. Phytopathol. 48: 395–417. doi: 10.1146/annurev-phyto-073009-114314

Macena AMF, Kobori NN, Mascarin GM, et al. (2020) Antagonism of Trichoderma-based biofungicides against Brazilian and North American isolates of Sclerotinia sclerotiorum and growth promotion of soybean. BioControl 65: 235–246. doi: 10.1007/s10526-019-09976-8

Macías-Rodríguez L, Guzmán-Gómez A, García-Juárez P, Contreras-Cornejo HA (2018) Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophtora cinnamomic in a tripartite interaction system. FEMS Microbiol. Ecol. 94. doi: 10.1093/femsec/fiy137

Malmierca MG, Cardoza RE, Alexander NJ, et al. (2012) Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl Environ Microbiol. 78(14): 4856-68. doi: 10.1128/AEM.00385-12

Malmierca MG, Cardoza RE, Alexander NJ, et al. (2013) Relevance of trichothecenes in fungal physiology: disruption of tri5 in Trichoderma arundinaceum. Fungal Genet Biol. 53: 22-33. doi: 10.1016/j.fgb.2013.02.001

Malmierca MG, Barua J, McCormick SP, et al. (20145 (2015), Aspinolides in Trichoderma interactions. Environ Microbiol, 17: 1103-1118. doi: 10.1111/1462-2920.12514

Manganiello G, Sacco A, Ercolano MR, et al. (2018) Modulation of tomato response to Rhizoctonia solani by Trichoderma harzianum and its secondary metabolite harzianic acid. Front. Microbiol. 9:1966. doi: 10.3389/fmicb.2018.01966

Modrzewska M, Bryła M, Kanabus J, Pierzgalski A (2022) Trichoderma as a biostimulator and biocontrol agent against Fusarium in the production of cereal crops: opportunities and possibilities. Plant Pathol. doi: 10.1111/ppa.13578

Mommaerts V, et al. (2008) Trichoderma-based biological control agents are compatible with the pollinator Bombus terrestris: A laboratory study. Biological Control 46: 463-466. doi: 10.1016/j.biocontrol.2008.05.007

Moreno-Ruiz D, Salzmann L, Fricker MD, et al. (2021) Stress-Activated Protein Kinase Signalling Regulates Mycoparasitic Hyphal-Hyphal Interactions in Trichoderma atroviride. Journal of Fungi. 7(5): 365. doi: 10.3390/jof7050365

Moya et al. (2020) New isolates of Trichoderma spp. as biocontrol and plant growth–promoting agents in the pathosystem Pyrenophora teres-barley in Argentina. Biological Control 141: 104152. doi: 10.1016/j.biocontrol.2019.104152

Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma–a genomic perspective. Microbiology (Reading) 158(Pt 1): 35-45. doi:

Mukherjee PK, Horwitz B, Herrera-Estrella A, et al. (2013) Trichoderma research in the genome era. Annu. Rev. Phytopathol. 51: 105–129. doi: 10.1146/annurev-phyto-082712-102353

Mukhopadhyay R, Kumar D (2020) Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egypt J Biol Pest Control 30: 133. doi: 10.1186/s41938-020-00333-x

Pfordt A, Schiwek S, Karlovsky P, von Tiedemann A (2020) Trichoderma Afroharzianum Ear Rot–A New Disease on Maize in Europe. Front. Agron. 2: 547758. doi: 10.3389/fagro.2020.547758

Persoon CH (1794) Disposita methodical fungorum. Romers. Neues. Mag. Bot. 1794, 1, 81–128.

Pilgaard B, Vuillemin M, Munk L, et al. (2022) Discovery of a Novel Glucuronan Lyase System in Trichoderma parareesei. Appl Environ Microbiol. 88(1): e0181921. doi: 10.1128/AEM.01819-21

Ramírez-Valdespino CA, Casas-Flores S and Olmedo-Monfil V (2019) Trichoderma as a Model to Study Effector-Like Molecules. Front. Microbiol. 10: 1030. doi: 10.3389/fmicb.2019.01030

Ranade Y, Pathak P, Sawant I, et al. (2022) Trichoderma asperelloides 5R and Bacillus licheniformis TL-171 reduce epiphytic colonization and post-harvest berry decay due to Cladosporium sp. and improve the shelf life of grapes. Trop. plant pathol. 47: 521–529. doi: 10.1007/s40858-022-00506-z

Rezaee Danesh Y, Pellegrini M, Kariman K, et al. (2022) Genetic Diversity of Trichoderma harzianum Isolates in Sunflower Rhizosphere: The Application of the URP Molecular Marker. Sustainability 14(22): 15111. doi: 10.3390/su142215111

Risoli S, Petrucci A, Vicente I, Sarrocco S (2023) Trichoderma gamsii T6085, a biocontrol agent of Fusarium head blight, modulates biocontrol-relevant defence gene expression in wheat. Plant Pathol. doi: 10.1111/ppa.13773

Rodrigues AO, May De Mio LL, Soccol CR (2023) Trichoderma as a powerful fungal disease control agent for a more sustainable and healthy agriculture: recent studies and molecular insights. Planta 257: 31. doi: 10.1007/s00425-022-04053-4

Sahebani N, Hadavi N (2008) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biology and Biochemistry 40: 2016-2020. doi: 10.1016/j.soilbio.2008.03.011

Sánchez-Montesinos B, Santos M, Moreno-Gavíra A, et al. (2021) Biological Control of Fungal Diseases by Trichoderma aggressivum f. europaeum and Its Compatibility with Fungicides. Journal of Fungi. 7(8): 598. doi: 10.3390/jof7080598

Siebatcheu EC, Wetadieu D, Youassi Youassi O, et al. (2022) Secondary metabolites from an endophytic fungus Trichoderma erinaceum with antimicrobial activity towards Pythium ultimum. Nat Prod Res. 1-6. doi: 10.1080/14786419.2022.2075360

Silva LG, Camargo RC, Mascarin GM, et al. (2022) Dual functionality of Trichoderma: Biocontrol of Sclerotinia sclerotiorum and biostimulant of cotton plants. Front. Plant Sci. 13: 983127. doi: 10.3389/fpls.2022.983127

Stracquadanio C, Quiles JM, Meca G, Cacciola SO (2020) Antifungal Activity of Bioactive Metabolites Produced by Trichoderma asperellum and Trichoderma atroviride in Liquid Medium. Journal of Fungi. 6(4): 263. doi: 10.3390/jof6040263

Waghunde RR, Shelake RM, Sabalpara AN (2016) Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11(22): 1952-1965. doi: 10.5897/AJAR2015.10584

Watts R, Dahiya J, Chaudhary K, et al. (1988) Isolation and characterization of a new antifungal metabolite of Trichoderma reesei. Plant Soil 107: 81–84. doi: 10.1007/BF02371547

Woo SL, Lorito M (2022) Trichoderma for Biocontrol and Biostimulation – A Green Fungus Revolution in Agriculture . In Good Microbes in Medicine, Food Production, Biotechnology, Bioremediation, and Agriculture (eds F.J. de Bruijn, H. Smidt, L.S. Cocolin, M. Sauer, D. Dowling and L. Thomashow). doi: 10.1002/9781119762621.ch41

Woo SL, Hermosa R, Lorito M, et al. (2022) Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol. doi: 10.1038/s41579-022-00819-5

Zeilinger S, Gruber S, Bansal R, Mukherjee PK (2016) Secondary metabolism in Trichoderma – Chemistry meets genomics. Fungal Biology Reviews 30(2): 74-90. doi: 10.1016/j.fbr.2016.05.001

Zhang J, Chen G-Y, Li X-Z, et al. (2017) Phytotoxic, antibacterial, and antioxidant activities of mycotoxins and other metabolites from Trichoderma sp. Nat. Prod. Res. 31: 2745–2752. doi: 10.1080/14786419.2017.1295235

Zin NA, Badaluddin NA (2020) Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences 65: 168-178. doi: 10.1016/j.aoas.2020.09.003

¿Cómo citar esta información para publicaciones?
Herbario Virtual. Cátedra de Fitopatología. Facultad de Agronomía de la Universidad de Buenos Aires. https://herbariofitopatologia.agro.uba.ar