Podredumbre del tomate causada por Phytophthora (Phytophthora spp.)


Condición fitosanitaria: Presente

Grupo de cultivos: Hortícola

Especie hospedante: Tomate (Solanum lycopersicum = Lycopersicum esculentum)

Rango de hospedantes: amplio / no específico

Etiología: Pseudohongo. Necrotrófico

Agente causal: Phytophthora parasitica, Phytophthora capsici Leonian

Taxonomía: Eukaryota > Stramenopiles > Oomycetes > Peronosporales > Phytophthora









Admassie M, Woldehawariat Y, Alemu T (2022) In Vitro Evaluation of Extracellular Enzyme Activity and Its Biocontrol Efficacy of Bacterial Isolates from Pepper Plants for the Management of Phytophthora capsici. Biomed Res Int. 2022: 6778352. doi: 10.1155/2022/6778352

Brasier C, Scanu B, Cooke D, Jung T (2022) Phytophthora: an ancient, historic, biologically and structurally cohesive and evolutionarily successful generic concept in need of preservation. IMA Fungus 13(1): 12. doi: 10.1186/s43008-022-00097-z

Cai M, Li T, Lu X, et al. (2021) Multiple mutations in the predicted transmembrane domains of the cellulose synthase 3 (CesA3) of Phytophthora capsici can confer semi-dominant resistance to carboxylic acid amide fungicides. Int J Biol Macromol. S0141-8130(21)02464-8. doi: 10.1016/j.ijbiomac.2021.11.066

Cheng W, Lin M, Chu M, et al. (2022) RNAi-based gene silencing of RXLR effectors protects plant against the oomycete pathogen Phytophthora capsici. Mol Plant Microbe Interact. doi: 10.1094/MPMI-12-21-0295-R

Dai T, Wang Z, Cheng X, et al. (2022) Uncoupler SYP-14288 inducing multidrug resistance of Phytophthora capsici through overexpression of cytochrome P450 monooxygenases and P-glycoprotein. Pest Manag Sci. doi: 10.1002/ps.6845

Dura S, Lujan P, Guzman I, et al. (2021) A Field Evaluation of Jalapeño and Non-Jalapeño Chile Pepper Resistance to Phytophthora Blight Caused by Phytophthora capsici. Plant Health Progress. doi: 10.1094/PHP-02-21-0029-FI

Fan G, Zou A, Wang X, et al. (2022) Polymorphic Microsatellite Development, Genetic Diversity, Population Differentiation and Sexual State of Phytophthora capsici on Commercial Peppers in Three Provinces of Southwest China. Appl Environ Microbiol.: e0161122. doi: 10.1128/aem.01611-22

Gao RF, Wang JY, Liu KW, et al. (2021) Comparative analysis of Phytophthora genomes data. Data Brief. 39: 107663. doi: 10.1016/j.dib.2021.107663

Gou X, Zhong C, Zhang P, et al. (2022) miR398b and AtC2GnT form a negative feedback loop to regulate Arabidopsis thaliana resistance against Phytophthora parasitica. Plant J. doi: 10.1111/tpj.15792

He L, Wang M, Wang H, et al. (2022) iTRAQ proteomic analysis of the inhibitory effect of 1,6-O,O-diacetylbritannilactone on the plant pathogenic oomycete Phytophthora capsici. Pestic Biochem Physiol. 184: 105125. doi: 10.1016/j.pestbp.2022.105125

Hudson O, Waliullah S, Ji P, et al. (2021) Detection of Phytophthora capsici from Irrigation Ponds in South Georgia. Plant Health Progress. doi: 10.1094/PHP-02-21-0043-FI

Hunter S, Williams N, McDougal R, et al. (2018) Evidence for rapid adaptive evolution of tolerance to chemical treatments in Phytophthora species and its practical implications. PLoS One 13(12): e0208961. doi: 10.1371/journal.pone.0208961

Jedelská T, Sedlářová M, Lochman J, et al. (2021) Protein S-nitrosation differentially modulates tomato responses to infection by hemi-biotrophic oomycetes of Phytophthora spp. Hortic Res. 8(1): 34. doi: 10.1038/s41438-021-00469-3

Kato F, Ando Y, Tanaka A, et al. (2022) Inhibitors of Asexual Reproduction of the Plant Pathogen Phytophthora from Tomato Juice: Structure-Activity Relationships and Transcriptome Analysis. J Agric Food Chem. doi: 10.1021/acs.jafc.2c05556

Kato F, Ando Y, Tanaka A, et al. (2022) Synthesis of aglycones, structure-activity relationships, and mode of action of lycosides as inhibitors of the asexual reproduction of Phytophthora. Biosci Biotechnol Biochem. : zbac179. doi: 10.1093/bbb/zbac179

Kronmiller BA, Feau N, Shen D, et al. (2023) Comparative Genomic Analysis of 31 Phytophthora Genomes Reveals Genome Plasticity and Horizontal Gene Transfer. Mol Plant Microbe Interact. 36(1): 26-46. doi: 10.1094/MPMI-06-22-0133-R

Li H, Wang N, Ding J, et al. (2022) Spatial Distribution of the Pepper Blight (Phytophthora capsici) Suppressive Microbiome in the Rhizosphere. Front Plant Sci. 12: 748542. doi: 10.3389/fpls.2021.748542

Li T, Cai M, Wang W, et al. (2022) PcCesA1 is involved in the polar growth, cellulose synthesis, and glycosidic linkage crosslinking in the cell wall of Phytophthora capsici. Int J Biol Macromol. 208: 720-730. doi: 10.1016/j.ijbiomac.2022.03.170

Li Y, Xu Z, Chen L, et al. (2022) New metabolites from Streptomyces pseudovenezuelae NA07424 and their potential activity of inducing resistance in plants against Phytophthora capsici. Pest Manag Sci. doi: 10.1002/ps.7204

Li TAi GFu X, et al. (2022) A Phytophthora capsici RXLR effector manipulates plant immunity by targeting RAB proteins and disturbing the protein trafficking pathway. Molecular Plant Pathology 00: 1– 16. doi: 10.1111/mpp.13251

Lin X, Torres Ascurra YC, Fillianti H, et al. (2023) Recognition of Pep-13/25 MAMPs of Phytophthora localizes to an RLK locus in Solanum microdontum. Front Plant Sci. 13: 1037030. doi: 10.3389/fpls.2022.1037030

Liu Y, He P, He P, et al. (2022) Potential biocontrol efficiency of Trichoderma species against oomycete pathogens. Front Microbiol. 13: 974024. doi: 10.3389/fmicb.2022.974024

Meng Y, Zhang Q, Ding W, Shan W (2014) Phytophthora parasitica: a model oomycete plant pathogen. Mycology 5(2): 43-51. doi: 10.1080/21501203.2014.917734

Michael VN, Fu Y, Shrestha S, Meru G (2021) A Novel QTL for Resistance to Phytophthora Crown Rot in Squash. Plants (Basel). 10(10): 2115. doi: 10.3390/plants10102115

Neupane K, Ghimire B, Baysal-Gurel F (2022) Efficacy and Timing of Application of Fungicides, Biofungicides, Host-Plant Defense Inducers, and Fertilizer to Control Phytophthora Root Rot of Flowering Dogwoods in Simulated Flooding Conditions in Container Production. Plant Disease. doi: 10.1094/PDIS-02-22-0437-RE

Obregón V (2018) Guía para la identificación de las enfermedades de tomate en invernadero. INTA EEA Bella Vista. Link

Parada-Rojas CH, Granke LL, Naegele RP, et al. (2021) A Diagnostic Guide for Phytophthora capsici Infecting Vegetable Crops. Plant Health Progress. doi: 10.1094/PHP-02-21-0027-FI

Parada Rojas CH, Quesada-Ocampo L (2022) Phytophthora capsici populations are structured by host, geography, and fluopicolide sensitivity. Phytopathology. doi: 10.1094/PHYTO-09-21-0403-R

Rabuma T, Gupta OP, Yadav M, Chhokar V (2022) Integrative RNA-Seq analysis of Capsicum annuum L.-Phytophthora capsici L. pathosystem reveals molecular cross-talk and activation of host defence response. Physiol Mol Biol Plants. 28(1): 171-188. doi: 10.1007/s12298-021-01122-y

Ro N, Haile M, Hur O, et al. (2022) Genome-Wide Association Study of Resistance to Phytophthora capsici in the Pepper (Capsicum spp.) Collection. Front Plant Sci. 13: 902464. doi: 10.3389/fpls.2022.902464

Sanogo S, Lamour K, Kousik S, et al. (2022) Phytophthora capsici, 100 Years Later: Research Mile Markers from 1922 to 2022. Phytopathology. doi: 10.1094/PHYTO-08-22-0297-RVW

Seo YE, Lee HY, Kim H, et al. (2022) The Phytophthora capsici RxLR effector CRISIS2 triggers cell death via suppressing plasma membrane H +-ATPase in host plant. J Exp Bot.: erac500. doi: 10.1093/jxb/erac500

Situ J, Xi P, Lin L, et al. (2022) Signal and regulatory mechanisms involved in spore development of Phytophthora and Peronophythora. Front Microbiol. 13: 984672. doi: 10.3389/fmicb.2022.984672

Su Y, Fan R, Hu LS, et al. (2022) An Effective Inoculation Method for Phytophthora capsici on Black Pepper Plants. J Vis Exp.  (187). doi: 10.3791/63002

Vogel G, Giles G, Robbins KR, et al. (2022) Quantitative genetic analysis of interactions in the pepper-Phytophthora capsici pathosystem. Mol Plant Microbe Interact. doi: 10.1094/MPMI-12-21-0307-R

Volynchikova E, Kim KD (2023) Anti-Oomycete Activity and Pepper Root Colonization of Pseudomonas plecoglossicida YJR13 and Pseudomonas putida YJR92 against Phytophthora capsici. Plant Pathol J. 39(1): 123-135. doi: 10.5423/PPJ.OA.01.2023.0001

Wang W, Zhang F, Zhang S, et al. (2022) Phytophthora capsici sterol reductase PcDHCR7 has a role in mycelium development and  pathogenicity. Open Biol.  12(4): 210282. doi: 10.1098/rsob.210282

Wang B, He B, Chen T, et al. (2022) Discovery of Tropolone Stipitaldehyde as a Potential Agent for Controlling Phytophthora Blight and Its Action Mechanism Research. J Agric Food Chem. doi: 10.1021/acs.jafc.2c03163

Wang Z, Gao X, Zhong S, et al. (2022) Host-induced gene silencing of PcCesA3 and PcOSBP1 confers resistance to Phytophthora capsici in Nicotiana benthamiana through NbDCL3 and NbDCL4 processed small interfering RNAs. Int J Biol Macromol.  S0141-8130(22)02109-2. doi: 10.1016/j.ijbiomac.2022.09.178

Xu J, Li Y, Jia J, et al. (2022) Mutations in PpAGO3 Lead to Enhanced Virulence of Phytophthora parasitica by Activation of 25-26 nt sRNA-Associated Effector Genes. Front Microbiol. 13: 856106. doi: 10.3389/fmicb.2022.856106

Yang C, Zheng B, Wang R, et al. (2022) A Putative P-Type ATPase Regulates the Secretion of Hydrolytic Enzymes, Phospholipid Transport, Morphogenesis, and Pathogenesis in Phytophthora capsici. Front Plant Sci. 13: 852500. doi: 10.3389/fpls.2022.852500

Yang K, Wang Y, Zhao H, et al. (2022) Novel EIicitin from Pythium oligandrum Confers Disease Resistance against Phytophthora capsici in Solanaceae Plants. J Agric Food Chem. doi: 10.1021/acs.jafc.2c06431

Zhang Y, Yin Z, Pi L, et al. (2023) A Nicotiana benthamiana receptor-like kinase regulates Phytophthora resistance by coupling with BAK1 to enhance elicitin-triggered immunity. J Integr Plant Biol. doi: 10.1111/jipb.13458

Zhou Y, Zhang Z, Bao Z, et al. (2022) Graph pangenome captures missing heritability and empowers tomato breeding. Nature. doi: 10.1038/s41586-022-04808-9

¿Cómo citar esta información para publicaciones?
Herbario Virtual. Cátedra de Fitopatología. Facultad de Agronomía de la Universidad de Buenos Aires. http://herbariofitopatologia.agro.uba.ar