.
Condición fitosanitaria: Presente / Presente
Grupo de cultivos: Leñosas (Frutales, Forestales, Ornamentales)
Rango de especies hospedantes: +600 especies. Agrobacterium spp. es capaz de infectar principalmente plantas dicotiledóneas (Winans, 1992).
Epidemiología: monocíclica*, subaguda. (*) excepto que durante la misma estación de crecimiento las labores o el riego dispersen el inóculo a partir de un árbol infectado
Etiología: Bacteria. Gram negativa. Considerada biotrófica (*)
Agente causal: Agrobacterium spp
Taxonomía: Bacteria > Proteobacteria > Alphaproteobacteria > Rhizobiales > Rhizobiaceae > Rhizobium/Agrobacterium group > Agrobacterium > Agrobacterium tumefaciens complex
.
(*) actualmente hay controversia sobre si se la debe considerar una bacteria biotrófica o hemibiótrofa. Agrobacterium, podría considerarse un verdadero biótrofo porque no mata a las células de la planta hospedante, sino que induce el desarrollo de tumores vegetales para que proliferen y produzcan metabolitos que puede catabolizar (Kraepiel y Barny, 2016). Sorprendentemente, algunos rasgos de la relación de parasitismo se parecen a los expresados por simbiontes en bacterias de fijación de N estrechamente relacionadas de la familia Rhizobiaceae revelando comportamientos similares entre simbiontes y biótrofos patógenos (González‐Mula et al., 2018).
Las especies de Agrobacterium son particulares porque infectan a sus hospedantes solo a través de heridas que liberan compuestos como la acetosiringona, que activan el mecanismo complejo y único codificado por los plásmidos. Esta compleja interacción da como resultado la inserción de una secuencia de Ti o Ri en el genoma de la planta en el núcleo celular (Gelvin, 2000).
.
.
.
Síntomas
El síntoma característico de la enfermedad son los tumores que causa en plantas leñozas. Estas agallas o tumores son leñosas y mantienen la coloración y la textura del resto de la corteza.
.
.
Bibliografía
Abrahamovich E, López AC, Alippi AM (2014) Diversidad de cepas de Agrobacterium rubi aisladas de arándanos. Revista argentina de microbiología 46(3): 237-241. doi: 10.1016/S0325-7541(14)70078-1
Ade-Ogunnowo FE, Adejoye OD, Awofodu AD, Abdulwahab MM (2017) Comparative study of the effects of artesunate and garlic extract on tomato crown gall disease. Journal of Agricultural Research and Development 16(1). doi: 10.4314/jard.v16i1.9
Alburquerque N, Faize L, Burgos L (2017) Silencing of Agrobacterium tumefaciens oncogenes iptand iaaM induces resistance to crown gall disease in plum but not in apricot. Pest Management Science 73: 2163-2173. doi: 10.1002/ps.4600
Ali H, Khalil A, Hussain A, Imran (2010) Incidence and Severity of Crown Gall Disease of Cherry, Apple and Apricot Plants Caused by Agrobacterium tumefaciens in Nagar Valley of Gilgit-Baltistan, Pakistan. Pakistan Journal of Nutrition 9(6). doi: 10.3923/pjn.2010.577.581
Alippi AM, Lopez AC, Balatti PA (2010) First Report of Agrobacterium rubi and A. rhizogenes Causing Crown and Root Gall and Hairy Root on Blueberry in Argentina. Plant Disease 94(8): 1064. doi: 10.1094/PDIS-94-8-1064C
Alippi AM, López AC, Balatti PA (2011) Métodos para la detección de Agrobacterium a partir de muestras de material vegetal, suelo y agua. Revista Argentina de Microbiología 43: 278-286. Link
Alippi AM, López AC, Balatti PA (2012) Diversity among agrobacteria isolated from diseased plants of blueberry (Vaccinium corymbosum) in Argentina. Eur J Plant Pathol 134: 415–430. doi: 10.1007/s10658-012-0001-x
Anand A, Uppalapati SR, Ryu CM, et al. (2008) Salicylic Acid and Systemic Acquired Resistance Play a Role in Attenuating Crown Gall Disease Caused by Agrobacterium tumefaciens. Plant Physiology 146(2): 703-715. doi: 10.1104/pp.107.111302
Aysan Y, Sahin F (2003) An outbreak of crown gall disease on rose caused by Agrobacterium tumefaciens in Turkey. Plant Pathology 52: 780-780. doi: 10.1111/j.1365-3059.2003.00889.x
Benjama A, Boubaker A, Khlief H, et al. (2002) Susceptibility of stone-fruit rootstocks, rose and grapevine to Agrobacterium radiobacter var. tumefaciens in Arab Mediterranean countries. EPPO Bulletin, 32: 463-466. doi: 10.1046/j.1365-2338.2002.00589.x
Bouzar H, Daouzli N, Krimi Z, et al. (1991) Crown gall incidence in plant nurseries of Algeria, characteristics of Agrobacterium tumefaciens strains, and biological control of strains sensitive and resistant to agrocin 84. Agronomie 11: 901–908. doi: 10.1051/agro:19911007
Bouzar H, Ouadah D, Krimi Z, et al. (1993) Correlative Association between Resident Plasmids and the Host Chromosome in a Diverse Agrobacterium Soil Population. Appl Environ Microbiol. 59(5): 1310-1317. doi: 10.1128/aem.59.5.1310-1317.1993
Bouzar H, Jones JB (2001) Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumors of Ficus benjama. International Journal of Systematics and Evolutionary Microbiology 51: 1023–1026. doi:
Braun AC (1958) A physiological basis for autonomous growth of the crown-gall tumor cell. Proc. Natl. Acad. Sci. U.S.A. 44, 344–349. doi: 10.1073/pnas.44.4.344
Bundock P, denDulk-Ras A, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14: 3206–3214. doi: 10.1002/j.1460-2075.1995.tb07323.x
Chandran Darbari V, Waksman G (2015) Structural Biology of Bacterial Type IV Secretion Systems. Annu Rev Biochem. 84: 603-629. doi: 10.1146/annurev-biochem-062911-102821
Chilton M-D, Drummond MH, Merlo DJ, et al. (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263–271. doi: 10.1016/0092-8674(77)90043-5
Clare BG, Kerr A, Jones DA (1990) Characteristics of the nopaline catabolic plasmid in Agrobacterium strains K84 and K1026 used for biological control of crown gall disease. Plasmid 23: 126–137. doi: 10.1016/0147-619X(90)90031-7
Cooksey DA and Moore LW (1980) Biological control of crown gall with fungal and bacterial antagonists. Phytopathology 70: 506–509. doi: 10.1094/Phyto-70-506
Cooksey DA, Moore LW (1982) Biological control of crown gall with an agrocin mutant of Agrobacterium radiobacter. Phytopathology 72: 919–921. doi: 10.1094/Phyto-72-919
Correa OS, Montecchia MS, Romero AM, Wright ER (2005) Detección de Agrobacterium patógeno en material de propagación de arándanos en Argentina. I Congreso Latinoamericano de arándanos y otros berries. Libro de Resúmenes. Ciudad de Buenos Aires. 16 de septiembre. Página: 33.
Costechareyre D, Rhouma A, Lavire C, et al. (2010) Rapid and efficient identification of Agrobacterium species by recA allele analysis. Microb Ecol. 60(4): 862-72. doi: 10.1007/s00248-010-9685-7
Czolkoss S, Safronov X, Rexroth S, et al. (2021) Agrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes. Front. Microbiol. 12: 754486. doi: 10.3389/fmicb.2021.754486
Donner SC, Jones DA, McClure NC, et al. (1993) Agrocin 434, a new plasmid encoded agrocin from the biocontrol Agrobacterium strains K84 and K1026, which inhibits biovar 2 agrobacteria.
Physiological and Molecular Plant Pathology 42: 185–194. doi: 10.1006/pmpp.1993.1017
Ellis JG, Kerr A (1979) Transfer of agrocin 84 production from strain 84 to pathogenic recipients: a comment on previous paper. In: Schippers B and Gams W (eds) Soil-borne pathogens (pp 579–583) Academic Press, New York.
Ellis JG, Kerr A, Van Montagu M, Schell J (1979) Agrobacterium genetic studies on agrocin 84 production and the biological control of crown gall. Physiological Plant Pathology 15: 311–319. doi: 10.1016/0048-4059(79)90082-1
Ellis JG, Kerr A, Petit A, Tempe J (1982) Conjugal transfer of nopaline and agropine Ti-plasmids – the role of agrocinopines. Molecular and General Genetics 186: 269–274. doi: 10.1007/BF00331861
Fajardo NN, Tate ME, Clare BG (1995) Agrocin 434: an additional biological control component for crown gall. In: Ryder MH, Stephens PM and Bowen GD (eds) Improving Plant Productivity with Rhizosphere Bacteria (pp 128–130) CSIRO Division of Soils, Adelaide, Australia
Farrand SK, Wang C, Hong S, et al. (1992) Deletion derivatives of pAgK84 and their use in the analysis of Agrobacterium plasmid functions. Plasmid 28: 201–212. doi: 10.1016/0147-619X(92)90052-C
Farrand SK, van Berkum P, Oger P (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. International Journal of Systematics and Evolutionary Microbiology 53: 1681–1687.
Frikha-Gargouri O, Ben Abdallah D, Bhar I, Tounsi S (2017) Antibiosis and bmyB Gene Presence As Prevalent Traits for the Selection of Efficient Bacillus Biocontrol Agents against Crown Gall Disease. Frontiers in Plant Science 8: 1363. doi: 10.3389/fpls.2017.01363
Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol. 51: 223-256. doi: 10.1146/annurev.arplant.51.1.223
González‐Mula A, Lang J, Grandclément C, et al. (2018) Lifestyle of the biotroph Agrobacterium tumefaciens in the ecological niche constructed on its host plant. New Phytologist 219: 350-362. doi: 10.1111/nph.15164
Gonzalez-Mula A, Lachat J, Mathias L, et al. (2019) The biotroph Agrobacterium tumefaciens thrives in tumors by exploiting a wide spectrum of plant host metabolites. New Phytol 222: 455-467. doi: 10.1111/nph.15598
Gonzalez-Mula A, Lachat J, Mathias L, et al. (2019) The biotroph Agrobacterium tumefaciens thrives in tumors by exploiting a wide spectrum of plant host metabolites. New Phytol 222: 455-467. doi: 10.1111/nph.15598
2021) Seeing the forest for the trees: Use of phages to treat bacterial tree diseases. Plant Pathology 70: 1987– 2004. doi: 10.1111/ppa.13465
, , (Hayman GT, Farrand SK (1988) Characterization and mapping of the agrocinopine-agrocin 84 locus on the nopaline Ti plasmid pTiC58. Journal of Bacteriology 170: 1759. doi: 10.1128/jb.170.4.1759-1767.1988
Hooykaas PJJ (2023) The Ti Plasmid, Driver of Agrobacterium Pathogenesis. Phytopathology 113(4): 594-604. doi: 10.1094/PHYTO-11-22-0432-IA
Jones DA, Ryder MH, Clare BG, et al. (1988) Construction of a Tra- deletion mutant of pAgK84 to safeguard the biological control of crown gall. Molecular General Genetics 212: 207–214. doi: 10.1007/BF00334686
Jones DA, Kerr A (1989) Agrobacterium radiobacter Strain K1026, a Genetically Engineered Derivative of Strain K84, for Biological Control of Crown Gall. Plant Disease 73: 15-18. doi: 10.1094/PD-73-0015
Jones DA, Ryder MH, Clare BG, et al. (1991) Biological control of crown gall using Agrobacterium strains K84 and K1026. In: Komada H, Kiritani K and Bay-Petersen J (eds) The biological control of plant diseases (pp 161–170) FFTC Book Series no. 42. Food and Fertilizer Technology Center for the Asian and Pacific Region, Taipei, Taiwan
Kahla Y, Zouari-Bouassida K, Rezgui F, et al. (2017) Efficacy of Eucalyptus cinerea as a Source of Bioactive Compounds for Curative Biocontrol of Crown Gall Caused by Agrobacterium tumefaciens Strain B6,” BioMed Research International, vol. 2017, Article ID 9308063, 10 pages. doi: 10.1155/2017/9308063
Keane PJ, Kerr A, New PB (1970) Crown gall of stone fruit. 11. Identification and nomenclature of Agrobacterium isolates. Australian Journal of Biological Sciences 23: 585-595.
Kechris KJ, Lin JC, Bickel PJ, Glazer AN (2006) Quantitative exploration of the occurrence of lateral gene transfer by using nitrogen fixation genes as a case study. Proceedings of the National Academy of Sciences 103: 9584–9589. doi: 10.1073/pnas.0603534103
Kerr A (1972) Biological control of crown gall: seed inoculation. Journal of Applied Bacteriology 35: 493–497. doi: 10.1111/j.1365-2672.1972.tb03727.x
Kerr A, Htay K (1974) Biological control of crown gall through bacteriocin production. Physiological Plant Pathology 4: 37–44. doi: 10.1016/0048-4059(74)90042-3
Kerr A, Panagopoulos CG (1977) Biotypes of Agrobacterium radiobacter var. tumefaciens and their biological control. Phytopathologische Zeitschrift 90: 172–179.
Knauf VC, Panagopoulos CG, Nester EW (1983) Comparison of Ti plasmids from three different biotypes of Agrobacterium tumefaciens isolated from grapevines. J Bacteriol. Mar 153(3): 1535-1542. doi: 10.1128/jb.153.3.1535-1542.1983
Kraepiel Y, Barny M‐A (2016) Gram‐negative phytopathogenic bacteria, all hemibiotrophs after all?. Molecular Plant Pathology 17: 313-316. doi: 10.1111/mpp.12345
, , , et al. (2022) Cryo-EM structure of the Agrobacterium tumefaciens type IV secretion system-associated T-pilus reveals stoichiometric protein-phospholipid assembly. bioRxiv 2022.09.25.509369; doi:Krimi Z, Raio A, Petit A, et al. (2006) Eucalyptus occidentalis plantlets are naturally infected by pathogenic Agrobacterium tumefaciens . Eur J Plant Pathol 116: 237–246. doi: 10.1007/s10658-006-9055-y
Kumar SV, Misquitta RW, Reddy VS, et al. (2004) Genetic transformation of the green alga Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci. 166: 731–738. doi: 10.1016/j.plantsci.2003.11.012
Kunik T, Tzfira T, Kapulnik Y, et al. (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci, U.S.A. 98: 1871–1876. doi: 10.1073/pnas.98.4.1871
Lasalle F, Campillo T, Vial L, et al. (2011) Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biology and Evolution 3: 762–781. doi: 10.1093/gbe/evr070
Lemmers M, Holsters M, Zambryski P, et al. (1980) Internal organization, boundaries and integration of Ti-plasmid DNA in nopaline crown gall tumors. J. Mol. Biol. 144: 353–376. doi: 10.1016/0022-2836(80)90095-9
Lim SH, Kim JG, Kang HW (2009) Novel SCAR primers for specific and sensitive detection of Agrobacterium vitis strains. Microbiol Res. 164(4): 451-60. doi: 10.1016/j.micres.2007.02.006
Lopez MM, Gorris MT, Temprano FJ, Orive RJ (1987) Results of seven years of biological control of Agrobacterium tumefaciens in Spain. Bulletin EPPO/OEPP Bulletin 17: 273–280. doi: 10.1111/j.1365-2338.1987.tb00039.x
Lopez MM, Gorris MT, Salcedo CI, et al. (1989) Evidence of biological control of Agrobacterium tumefaciens strains sensitive and resistant to agrocin 84 by different Agrobacterium radiobacter strains on stone fruit trees. Applied and Environmental Microbiology 55: 741–746. doi: 10.1128/aem.55.3.741-746.1989
Ma LS, Hachani A, Lin JS, et al. (2014) Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta. Cell Host & Microbe 16(1): 94-104. doi: 10.1016/j.chom.2014.06.002
Martin DM, Rossini M, Gallo S, et al. (2014) Et-ByM-4. Primer reporte de agalla de corona (Agrobacterium tumefasciens) en avellano en Argentina. En: 3º Congreso Argentino de Fitopatología. Libro de Resúmenes. Editor/es: Leonardo Daniel Ploper. Página/s: 166. ISBN/ISSN: 978-987-24373-1-2.
McClure NC, Ahmadi AR, Clare BG (1998) Construction of a range of derivatives of the biological control strain Agrobacterium rhizogenes K84: a study of factors involved in biological control of crown gall disease. Applied and Environmental Microbiology 64: 3977–3982. doi: 10.1128/AEM.64.10.3977-3982.1998
Moore LW, Bouzard H, Burr T (2001) Agrobacterium. In Schaad NW, Jones JB, Chun W (Eds.), Laboratory guide for the identification of plant pathogenic bacteria (pp. 17–35). St. Paul: APS Press.
Murphy PJ, Roberts WP (1979) A basis for agrocin 84 sensitivity in Agrobacterium radiobacter. Journal of General Microbiology 114: 207–213. doi:
Nesme X, Michel MF, Digat B (1987) Population Heterogeneity of Agrobacterium tumefaciens in Galls of Populus L. from a Single Nursery. Appl Environ Microbiol. 53(4): 655-9. doi: 10.1128/aem.53.4.655-659.1987
New PB and Kerr A (1972) Biological control of crown gall: field measurements and glasshouse experiments. Journal of Applied Bacteriology 35: 279–287. doi: 10.1111/j.1365-2672.1972.tb03699.x
Omarini A, Alet AI, Massone E, et al. (2006) Efectividad de la cepa de Agrobacterium radiobacter K84 en el control biológico de la agalla de corona. Congreso; XXVI Reunión de la Asociación Argentina de Fisiología Vegetal. Link
Panday D, Schumann P, Das SK (2011) Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.). Int J Syst Evol Microbiol. 61(Pt 11): 2632-2639. doi:
Peñalver R, Vicedo B, Salcedo CI, Lopez MM (1994) Agrobacterium radiobacter strain K84, K1026 and K84 Agr− produce an antibiotic-like substance, active in vitro against A. tumefaciens and phytopathogenic Erwinia and Pseudomonas. Biocontrol Science and Technology 4: 259–267. doi: 10.1080/09583159409355334
Peñalver R, Lopez MM (1999) Cocolonization of the rhizosphere by pathogenic Agrobacterium strains and nonpathogenic strains K84 and K1026, used for crown gall biocontrol. Applied and Environmental Microbiology 65: 1936–1940. doi: 10.1128/AEM.65.5.1936-1940.1999
Peñalver R, Vicedo B, López MM (2000) Use of the Genetically Engineered Agrobacterium Strain K1026 for Biological Control of Crown Gall. European Journal of Plant Pathology 106: 801–810. doi: 10.1023/A:1008785813757
Peñalver R, Oger P, López MM, Farrand SK (2001) Iron-binding compounds from Agrobacterium spp.: biological control strain Agrobacterium rhizogenes K84 produces a hydroxamate siderophore. Appl Environ Microbiol. 67(2): 654-64. doi: 10.1128/AEM.67.2.654-664.2001
Peñalver R, Marco-Noales E, López MM (2018) Tumores causados por Agrobacterium (Rhizobium) spp. Pág. 221- 237. En: Enfermedades de plantas causadas por bacterias. Ed. López MM, Murillo J, Montesinos E, Palacio- Bielsa A.
Pérez B, Fernández R, Wright E, et al. (2005) Agalla de Corona y Royas sobre “Berries” en algunas localidades de la Argentina En: XIII Congreso Latinoamericano de Fitopatología. 19-22 de abril, 2005. Villa Carlos Paz, Córdoba. Libro de resúmenes: 540. Página/s: 1.
Pérez BA, Wright ER, Fernández RR, Asciutto K (2006) Blueberry crown gall in Argentina. APS Annual Meeting. Proceedings. Austin. Texas. USA. 30 de julio – 3 de agosto.
Petrovicheva A, Joyner J, Muth TR (2017) Quantification of Agrobacterium tumefaciens C58 attachment to Arabidopsis thaliana roots. FEMS Microbiology Letters 364(18): fnx158. doi: 10.1093/femsle/fnx158
Pitzschke A (2013) Agrobacterium infection and plant defense—transformation success hangs by a thread. Front. Plant Sci. 4: 519. doi: 10.3389/fpls.2013.00519
Portier P, Fischer-Le Saux M, Mougel C, et al. (2006) Identification of genomic species in Agrobacterium biovar 1 by AFLP genomic markers. Appl Environ Microbiol. 72(11): 7123-31. doi: 10.1128/AEM.00018-06
Puławska J, Willems A, Sobiczewski P (2006) Rapid and specific identification of four Agrobacterium species and biovars using multiplex PCR. Syst Appl Microbiol. 29(6): 470-9. doi: 10.1016/j.syapm.2005.11.002
Pulawska J, Willems A, Sobiczewski P (2012) Rhizobium skierniewicense sp. nov. isolated from tumors on chrysanthemum and Prunus in Poland. International Journal of Systematic and Evolutionary Microbiology 62: 895–899.
Quispe-Huamanquispe DG, Gheysen G, Kreuze JF (2017) Horizontal Gene Transfer Contributes to Plant Evolution: The Case of Agrobacterium T-DNAs. Frontiers in Plant Science 8: 2015. doi: 10.3389/fpls.2017.02015
Rhouma A, Ferchichi A, Hafsa M, Boubaker A (2004) Efficacy of the Non-Pathogenic Agrobacterium Strains K84 and K1026 against Crown Gall in Tunisia. Phytopathol. Mediterr. 43: 167-176. doi: https://doi.org/10.14601/Phytopathol_Mediterr-1745
Ryder MH, Tate ME, Kerr A (1985) Virulence properties of strains of Agrobacterium on the apical and Basal surfaces of carrot root discs. Plant Physiol. 77(1): 215-21. doi: 10.1104/pp.77.1.215
Ryder MH, Slota JE, Scarim A, Farrand SK (1987) Genetic analysis of agrocin 84 production and immunity in Agrobacterium spp. Journal of Bacteriology 169: 4184–4189. doi: 10.1128/jb.169.9.4184-4189.1987
Rouhrazi K, Rahimian H (2014) Biochemical and genetic characterisation of Agrobacterium tumefaciens the causal agent of walnut crown gall disease in Iran. Archives of Phytopathology and Plant Protection 47(20): 2493-2500. doi: 10.1080/03235408.2014.880575
Seleme F, González Vera C, Di Barbaro G, et al. (2006) Agalla de corona en plantas de olivo (Olea europea l.) causada por Agrobacterium tumefaciens (Smith y Thownsend) Conn. en la provincia de la Rioja. Revista del CIZAS 7: 55-63. ISSN 1515-0453
Setti B, Bencheikh M (2013) Isolation and characterization of the Agrobacterium tumefaciens from almond nurseries in chlef region in western Algeria. European Scientific Journal 9(30). eISSN 1857- 7431.
Skerman VBD, McGowan V, Sneath PHA (1980) Approved Lists of Bacterial Names. Intl. J. Syst. Bacteriol. 30(1): 225-420. doi:
Sciaky D, Montoya AL, Chilton MD (1978) Fingerprints of Agrobacterium Ti plasmids. Plasmid 1: 238–253. doi: 10.1016/0147-619X(78)90042-2
Smith EF, Townsend CO (1907) A plant tumor of bacterial origin. Science 25: 671–673. doi: 10.1126/science.25.643.671
Süle S (1978) Biotypes of Agrobacterium tumefaciens in Hungary. Journal of Applied Bacteriology 44: 207-213. doi: 10.1111/j.1365-2672.1978.tb00792.x
Stockwell VO, Moore LW, Loper JE (1993) Fate of Agrobacterium radiobacter K84 in the environment. Appl Environ Microbiol. 59(7): 2112-2120. doi: 10.1128/aem.59.7.2112-2120.1993
Tate ME, Murphy PJ, Roberts WP, Kerr A (1979) Adenine N6-substituent of agrocin 84 determines its bacteriocin-like specificity. Nature (London) 280: 697–699. doi: 10.1038/280697a0
Terán Baptista ZP, de Los Angeles Gómez A, Kritsanida M, et al. (2020) Antibacterial activity of native plants from Northwest Argentina against phytopathogenic bacteria. Nat Prod Res. 34(12): 1782-1785. doi: 10.1080/14786419.2018.1525716
Thomashow M, Panagopoulos C, Gordon M, et al. (1980) Host range of Agrobacterium tumefaciens is determined by the Ti plasmid. Nature 283: 794–796. doi: 10.1038/283794a0
Thomashow MF, Nutter R, Montoya AL, et al. (1980) Integration and organization of Ti plasmid sequences in crown gall tumors. Cell 19: 729–739. doi: 10.1016/S0092-8674(80)80049-3
Torres Tejerizo GA (2011) Estudios genómicos y caracterización funcional de rizobios tipo Oregon noduladores de alfalfa y otras leguminosas. Tesis doctoral, Universidad de La Plata. Link
Velázquez E, Palomo JL, Rivas R, et al. (2010) Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes. Syst Appl Microbiol. 33(5): 247-51. doi: 10.1016/j.syapm.2010.04.004
Vicedo B, Penalver R, Asins MJ, Lopez MM (1993) Biological control of Agrobacterium tumefaciens, colonization, and pAgK84 transfer with Agrobacterium radiobacter K84 and the Tra-mutant strain K1026. Applied Environmental and Microbiology 59: 309–315. doi: 10.1128/aem.59.1.309-315.1993
Vicedo B (1995) Plasmid transfer between Agrobacterium tumefaciens and A. radiobacter in biological control assays: characterization and behavior of the transconjugants. PhD Thesis. University of Valencia, Valencia, Spain.
Vicedo B, Lopez MJ, Asins MJ, Lopez MM (1996) Spontaneous transfer of the Ti plasmid of Agrobacterium tumefaciens and the nopaline catabolism plasmid of A. radiobacter strain K84 in crown gall tissue. Phytopathology 86: 528–534. doi: 10.1094/Phyto-86-528
Wang Y, Zhang S, Huang F, et al. (2018) VirD5 is required for efficient Agrobacterium infection and interacts with Arabidopsis VIP2. New Phytologist 217: 726-738. doi: 10.1111/nph.14854
, , , et al. (2022) The antibacterial T6SS of Agrobacterium tumefacien promotes disease occurrence and influences crown gall microbiota composition. bioRxiv 2022.10.28.514271; doi:Watson B, Nester EW (2005) A plasmid was present after all. En: Nester E, Gordon MP, Kerr A (Eds.), Agrobacterium tumefaciens. From plant pathology to biotechnology (pp. 53-65). Minnesota, UK: APS Press.
Winans SC (1992) Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol. Rev. 56, 12–31. doi: 10.1128/mr.56.1.12-31.1992
White PR, Braun AC (1941) Crown gall production by bacteria-free tumor tissues. Science 94: 239–241. doi: 10.1126/science.94.2436.239
Wu L, Xiao H, Zhao L, Cheng Q (2022) CRISPR/Cas9-mediated generation of fls2 mutant in Nicotiana benthamiana for investigating the flagellin recognition spectrum of diverse FLS2 receptors. Plant Biotechnol J, 20: 1853-1855. doi: 10.1111/pbi.13898
Reconstruction and analysis of a genome‐scale metabolic model for Agrobacterium tumefaciens. Mol Plant Pathol. 00: 1– 13. https://doi.org/10.1111/mpp.13032
, , , et al. (2021)Reconstruction and analysis of a genome‐scale metabolic model for Agrobacterium tumefaciens. Molecular Plant Pathology 22: 348– 360. doi: 10.1111/mpp.13032
, , , et al. (2021)Yang J, Pan X, Xu Y, et al. (2020) Agrobacterium tumefaciens ferritins play an important role in full virulence through regulating iron homeostasis and oxidative stress survival. Mol Plant Pathol. 21(9): 1167-1178. doi: 10.1111/mpp.12969
Young JM, Kuykendall LD, Martínez-Romero E, et al. (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systematics and Evolutionary Microbiology 51: 89–103. doi:
Young JM, Kerr A, Sawada H (2005) Genus II. Agrobacterium. In: Garrity GM, Brenner DJ, Krieg NR, Staley JR (Eds.), Bergey’s manual of systematic bacteriology, volume two: The Proteobacteria, parts A – C (pp. 340–345). Athens: Springer – Verlag.
Zaenen I, Van Larabeke N, Teuchy H, et al. (1974) Supercoiled circular DNA in crown gall inducing Agrobacterium strains. J. Mol. Biol. 86: 109–127. doi: 10.1016/S0022-2836(74)80011-2
Zambryski P, Holsters M, Kruger K, et al. (1980) Tumor DNA structure in plant cells transformed by A. tumefaciens. Science 209: 1385–1391. doi: 10.1126/science.6251546
Zhang L, Li X, Zhang F, Wang G (2014) Genomic analysis of Agrobacterium radiobacter DSM 30147(T) and emended description of A. radiobacter (Beijerinck and van Delden 1902) Conn 1942 (Approved Lists 1980) emend. Sawada et al. 1993. Standards in Genomic Sciences 9: 9030574. doi: 10.4056/sigs.4688352