.
Condición fitosanitaria: Presente
Grupo de cultivos: Hortícola
Especie hospedante: Tomate (Solanum lycopersicum L.)
Rango de hospedantes: A menudo se asocia con sus dos hospedantes más comunes, la papa y el tomate. Sin embargo, P. infestans tiene un amplio rango de hospedantes que incluye muchos miembros de las Solanaceae, como por ejemplo Solanum muricatum (Huo et al., 2023). Las solanáceas ornamentales también pueden ser hospedantes, como por ejemplo Petunia spp., Calibrachoa spp., así como las especies silvestres Solanum dulcamara, Solanum sarrachoides, etc.
Epidemiología: policíclica, aguda.
Etiología: Pseudohongo. Hemibiotrófico
Agente causal: Phytophthora infestans (Mont.) de Bary
Taxonomía: Eukaryota > Stramenopiles > Oomycetes > Peronosporales > Phytophthora
.
.
Sintomatología
El pátógeno infecta hojas, tallos y frutos, causando manchas y tizón foliar y puede, incluso, llegar a matar toda la planta. El patógeno también infecta las semillas de tomate (Chunwongse et al., 2002; Elsayed et al., 2011; Rubin et al., 2001).
.
.
Ver más detalles en el tizón tardío de la papa.
.
.
.
.
Bibliografía
Abad ZG, Burgess T, Redford AJ, et al. (2022) IDphy: An international online resource for molecular and morphological identification of Phytophthora. Plant Disease. doi: 10.1094/PDIS-02-22-0448-FE
Abdelrahman O, Yagi S, El Siddig M, et al. (2022) Evaluating the Antagonistic Potential of Actinomycete Strains Isolated From Sudan’s Soils Against Phytophthora infestans. Front Microbiol. 13: 827824. doi: 10.3389/fmicb.2022.827824
Abuley IK, Lynott JS, Hansen JG, et al. (2023) The EU43 genotype of Phytophthora infestans displays resistance to mandipropamid. Plant Pathology 00, 1– 9. doi: 10.1111/ppa.13737
Alfiky A, L’Haridon F, Abou-Mansour E, Weisskopf L (2022) Disease inhibiting effect of strain Bacillus subtilis EG21 and its metabolites against potato pathogens Phytophthora infestans and Rhizoctonia solani. Phytopathology. doi: 10.1094/PHYTO-12-21-0530-R
Alfiky A, Abou-Mansour E, de Vrieze M, et al. (2023) Newly isolated Trichoderma spp. show multifaceted biocontrol strategies to inhibit potato late blight causal agent Phytophthora infestans both in vitro and in planta. Phytobiomes Journal. doi: 10.1094/PBIOMES-01-23-0002-R
Avila-Quezada GD, Rai M (2023) Novel nanotechnological approaches for managing Phytophthora diseases of plants. Trends Plant Sci.: S1360-1385(23)00102-4. doi: 10.1016/j.tplants.2023.03.022
Belisle RJ, Hao W, Riley N, et al. (2022) Root absorption and limited mobility of mandipropamid as compared to oxathiapiprolin and mefenoxam after soil treatment of citrus plants for managing Phytophthora root rot. Plant Dis. doi: 10.1094/PDIS-07-22-1699-RE
Brasier C, Scanu B, Cooke D, Jung T (2022) Phytophthora: an ancient, historic, biologically and structurally cohesive and evolutionarily successful generic concept in need of preservation. IMA Fungus 13(1): 12. doi: 10.1186/s43008-022-00097-z
Bronkhorst J, Kasteel M, van Veen S, et al. (2021) A slicing mechanism facilitates host entry by plant-pathogenic Phytophthora. Nat Microbiol 6: 1000–1006. doi: 10.1038/s41564-021-00919-7
Bronkhorst J, Kots K, de Jong D, et al. (2022) An actin mechanostat ensures hyphal tip sharpness in Phytophthora infestans to achieve host penetration. Sci Adv. 8(23): eabo0875. doi: 10.1126/sciadv.abo0875
Burgess TI, Edwards J, Drenth A, et al. (2021) Current status of Phytophthora in Australia. Persoonia 47: 151-177. doi: 10.3767/persoonia.2021.47.05
Campbell AM, Moon RP, Duncan JM, et al. (1989) Protoplast formation and regeneration from sporangia and encysted zoospores of Phytophthora infestans. Physiol. Mol. Plant P. 34: 299–307. doi: 10.1016/0885-5765(89)90027-1
Chunwongse J, Chunwongse C, Black L, Hanson P (2002) Molecular mapping of the Ph-3 gene for late blight in tomato. J. Hortic. Sci. Biotechnol. 77: 281–286. doi: 10.1080/14620316.2002.11511493
Cohen Y, Rubin AE, Galperin M (2018) Oxathiapiprolin-based fungicides provide enhanced control of tomato late blight induced by mefenoxam-insensitive Phytophthora infestans. PLoS ONE 13(9): e0204523. doi: 10.1371/journal.pone.0204523
2022) The contributions of potassium phosphite and hormonal pathways to the control of Phytophthora infestans in tomato cv. Micro-Tom. Plant Pathology 00: 1– 8. doi: 10.1111/ppa.13669
, , , et al. (Deweer C, Sahmer K, Muchembled J (2023) Anti-oomycete activities from essential oils and their major compounds on Phytophthora infestans. Environ Sci Pollut Res Int. doi: 10.1007/s11356-023-29270-6
Dulal N, Wilson RA (2024) Paths of Least Resistance: Unconventional Effector Secretion by Fungal and Oomycete Plant Pathogens. Mol Plant Microbe Interact. 37(9): 653-661. doi: 10.1094/MPMI-12-23-0212-CR
Elsayed AY, Da Silva HD, Mizubuti ESG, Carneiro CP (2011) Combing the monogenic an-d polygenicresistant genes to late blight in tomato. J. Plant Breed. Crop. Sci. 3: 251–259. Link
Foster ZSL, Albornoz FE, Fieland VJ, et al. (2022) A New Oomycete Metabarcoding Method Using the rps10 Gene. Phytobiomes Journal 6: 214-226. doi: 10.1094/PBIOMES-02-22-0009-R
Gao RF, Wang JY, Liu KW, et al. (2021) Comparative analysis of Phytophthora genomes data. Data Brief. 39: 107663. doi: 10.1016/j.dib.2021.107663
Gevens AJ, Seidl AC (2013) First Report of Late Blight Caused by Phytophthora infestans Clonal Lineage US-23 on Tomato and Potato in Wisconsin, United States. Plant Disease 97(6): 839. doi: 10.1094/PDIS-09-12-0821-PDN
Gfeller A, Fuchsmann P, De Vrieze M, et al. (2022) Bacterial Volatiles Known to Inhibit Phytophthora infestans Are Emitted on Potato Leaves by Pseudomonas Strains. Microorganisms 10(8): 1510. doi: 10.3390/microorganisms10081510
Gilroy EM, Taylor RM, Hein I, et al. (2011) CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. New Phytol. 190(3): 653-66. doi: 10.1111/j.1469-8137.2011.03643.x
González-Tobón J, Childers R, Olave C, et al. (2020) Is the Phenomenon of Mefenoxam-Acquired Resistance in Phytophthora infestans Universal? Plant Disease 104(1): 211-221. doi: 10.1094/PDIS-10-18-1906-RE
2023) A single region of the Phytophthora infestans avirulence effector Avr3b functions in both cell death induction and plant immunity suppression. Molecular Plant Pathology 24: 317– 330. doi: 10.1111/mpp.13298
, , , et al. (Guan Y, Wei Z, Song P, et al. (2022) MicroRNA expression profiles in response to Phytophthora infestans and Oidium neolycopersici and functional identification of sly-miR397 in tomato. Phytopathology. doi: 10.1094/PHYTO-04-22-0117-R
Hernández-Soto I, González-García Y, Juárez-Maldonado A, Hernández-Fuentes AD (2024) Impact of Argemone mexicana L. on tomato plants infected with Phytophthora infestans. PeerJ. 12: e16666. doi: 10.7717/peerj.16666
Hunter S, Williams N, McDougal R, et al. (2018) Evidence for rapid adaptive evolution of tolerance to chemical treatments in Phytophthora species and its practical implications. PLoS One 13(12): e0208961. doi: 10.1371/journal.pone.0208961
Huo C, Cao J, Yin R, et al. (2023) First Report of Phytophthora infestans Causing Late Blight on Pepino (Solanum muricatum) in China. Plant Disease. doi: 10.1094/PDIS-04-22-0892-PDN
Ivanov AA, Ukladov EO, Golubeva TS (2021) Phytophthora infestans: An Overview of Methods and Attempts to Combat Late Blight. Journal of Fungi 7(12): 1071. doi: 10.3390/jof7121071
Ivanov AA, Tyapkin AV, Golubeva TS (2023) How Does the Sample Preparation of Phytophthora infestans Mycelium Affect the Quality of Isolated RNA? Current Issues in Molecular Biology 45(4): 3517-3524. doi: 10.3390/cimb45040230
Ivanov AA, Golubeva TS (2023) Exogenous dsRNA-Induced Silencing of the Phytophthora infestans Elicitin Genes inf1 and inf4 Suppresses Its Pathogenicity on Potato Plants. J Fungi (Basel) 9(11): 1100. doi: 10.3390/jof9111100
Janků M, Jedelská T, Činčalová L, et al. (2022) Structure-activity relationships of oomycete elicitins uncover the role of reactive oxygen and nitrogen species in triggering plant defense responses. Plant Sci. 319: 111239. doi: 10.1016/j.plantsci.2022.111239
Jiang R, He Q, Song J, et al. (2023) A Phytophthora infestans RXLR effector AVR8 suppresses plant immunity by targeting a desumoylating isopeptidase DeSI2. Plant J. doi: 10.1111/tpj.16232
Kamoun S, West P, Jong AJ, et al. (1997) A gene encoding a protein elicitor of Phytophthora infestans is down-regulated during infection of potato. Mol. Plant Microbe Interact. 10: 13–20. doi: 10.1094/MPMI.1997.10.1.13
Kasteel M, Ketelaar T, Govers F (2023) Fatal attraction: How Phytophthora zoospores find their host. Semin Cell Dev Biol. 148-149: 13-21. doi: 10.1016/j.semcdb.2023.01.014
Kato F, Ando Y, Tanaka A, et al. (2022) Synthesis of aglycones, structure-activity relationships, and mode of action of lycosides as inhibitors of the asexual reproduction of Phytophthora. Biosci Biotechnol Biochem.: zbac179. doi: 10.1093/bbb/zbac179
King F, Yuen ELH, Bozkurt TO (2023) Border Control: Manipulation of the Host-Pathogen Interface by Perihaustorial Oomycete Effectors. Mol Plant Microbe Interact. doi: 10.1094/MPMI-09-23-0122-FI
Kronmiller BA, Feau N, Shen D, et al. (2023) Comparative Genomic Analysis of 31 Phytophthora Genomes Reveals Genome Plasticity and Horizontal Gene Transfer. Mol Plant Microbe Interact. 36(1): 26-46. doi: 10.1094/MPMI-06-22-0133-R
Larson ER, Migliano LE, Chen Y, Gevens AJ (2021) Mefenoxam Sensitivity in US-8 and US-23 Phytophthora infestans from Wisconsin. Plant Health Progress. doi: 10.1094/PHP-02-21-0044-FI
Lee H, Kim S, Oh S, et al. (2014) Multiple recognition of RXLR effectors is associated with nonhost resistance of pepper against Phytophthora infestans. New Phytol. 203, 926–938. doi: 10.1111/nph.12861
Lee S, Lee HY, Kang HJ, et al. (2023) Oomycete effector AVRblb2 targets cyclic nucleotide-gated channels through calcium sensors to suppress pattern-triggered immunity. New Phytol. doi: 10.1111/nph.19430
Lin X, Witek K, Witek A, et al. (2019) The recognition of conserved RxLR effectors of Phytophthora species might help to defeat multiple oomycete diseases. Mol. Plant Microbe Interact. 32: S11–S1212. doi: 10.1094/MPMI-32-10-S1.1
Lin X, Torres Ascurra YC, Fillianti H, et al. (2023) Recognition of Pep-13/25 MAMPs of Phytophthora localizes to an RLK locus in Solanum microdontum. Front Plant Sci. 13: 1037030. doi: 10.3389/fpls.2022.1037030
Lin X, Jia Y, Heal R, et al. (2023) Solanum americanum genome-assisted discovery of immune receptors that detect potato late blight pathogen effectors. Nat Genet. doi: 10.1038/s41588-023-01486-9
Liu C, Zhang Y, Tan Y, et al. (2021) CRISPR/Cas9-Mediated SlMYBS2 Mutagenesis Reduces Tomato Resistance to Phytophthora infestans. International Journal of Molecular Sciences 22(21): 11423. doi: 10.3390/ijms222111423
2023) Sensitivity of dominant UK Phytophthora infestans genotypes to a range of fungicide active ingredients. Plant Pathology 00: 1–12. doi: 10.1111/ppa.13832
, , (Mabon R, Guibert M, Corbière R, Andrivon D (2021) An Improved PCR Method for Rapid and Accurate Identification of Mating Types in the Late Blight Pathogen Phytophthora infestans. Plant Health Progress. doi: 10.1094/PHP-02-21-0026-FI
Mao S, Zhao J, Ding X, et al. (2023) Integrated Sensing Chip for Ultrasensitive Label-Free Detection of the Products of Loop-Mediated Isothermal Amplification. ACS Sens. 8(6): 2255-2262. doi: 10.1021/acssensors.3c00227
Matson MEH, Liang Q, Lonardi S, Judelson HS (2022) Karyotype variation, spontaneous genome rearrangements affecting chemical insensitivity, and expression level polymorphisms in the plant pathogen Phytophthora infestans revealed using its first chromosome-scale assembly. PLoS Pathog 18(10): e1010869. doi: 10.1371/journal.ppat.1010869
McLeod A, De Villiers D, Sullivan L, et al. (2023) First report of Phytophthora infestans lineage EU23 causing potato and tomato late blight in South Africa. Plant Dis. doi: 10.1094/PDIS-08-23-1511-PDN
Moon KB, Park SJ, Park JS, et al. (2022) Editing of StSR4 by Cas9-RNPs confers resistance to Phytophthora infestans in potato. Front Plant Sci. 13: 997888. doi: 10.3389/fpls.2022.997888
Mu Y, Guo X, Yu J, et al. (2022) SWATH-MS based quantitative proteomics analysis reveals novel proteins involved in PAMP triggered immunity against potato late blight pathogen Phytophthora infestans. Front Plant Sci. 13: 1036637. doi: 10.3389/fpls.2022.1036637
Naveed ZA, Bibi S, Ali GS (2019) The Phytophthora RXLR effector Avrblb2 modulates plant immunity by interfering with Ca2+ signaling pathway. Front. Plant Sci. 10: 374. doi: 10.3389/fpls.2019.00374
Neupane K, Ghimire B, Baysal-Gurel F (2022) Efficacy and Timing of Application of Fungicides, Biofungicides, Host-Plant Defense Inducers, and Fertilizer to Control Phytophthora Root Rot of Flowering Dogwoods in Simulated Flooding Conditions in Container Production. Plant Disease. doi: 10.1094/PDIS-02-22-0437-RE
Oh SK, Young C, Lee M, et al. (2009) In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2. Plant Cell 21: 2928–2947. doi: 10.1105/tpc.109.068247
Oh S, Kim S, oPark HJ, et al. (2023) Nucleotide-binding leucine-rich repeat network underlies nonhost resistance of pepper against the Irish potato famine pathogen Phytophthora infestans. Plant Biotechnol J. doi: 10.1111/pbi.14039
Olivieri FP, Lobato MC, Machinandiarena MF, et al. (2023) Undaria pinnatifida Aqueous Extract Activates Potato Defense Responses Against P. Infestans. SSRN. doi: 10.2139/ssrn.4418779
Oyarzun PJ, Pozo A, Ordoñez ME, et al. (1998) Host Specificity of Phytophthora infestans on Tomato and Potato in Ecuador. Phytopathology 88(3): 265-71. doi: 10.1094/PHYTO.1998.88.3.265
Perez W, Alarcon L, Rojas T, et al. (2022) Screening South American Potato Landraces and Potato Wild Relatives for Novel Sources of Late Blight Resistance. Plant Disease 106(7): 1845-1856. doi: 10.1094/PDIS-07-21-1582-RE
Pomerantz A, Cohen Y, Shufan E, et al. (2014) Characterization of Phytophthora infestans resistance to mefenoxam using FTIR spectroscopy. Journal of Photochemistry and Photobiology B: Biology
141: 308-314. doi: 10.1016/j.jphotobiol.2014.10.005
Poppel PMJA, Guo J, Vondervoort PJI, et al. (2008) The Phytophthora infestans avirulence gene Avr4 encodes an RXLR-dEER effector. Mol. Plant Microbe Interact. 21: 1460–1470. doi: 10.1094/MPMI-21-11-1460
Qin CF, He MH, Chen FP, et al. (2016) Comparative analyses of fungicide sensitivity and SSR marker variations indicate a low risk of developing azoxystrobin resistance in Phytophthora infestans. Nature Scientific Reports 6: 20483. doi: 10.1038/srep20483
Rubin E, Baider A, Cohen Y (2001) Phytophthora infestans produces oospores in fruits and seeds of tomato. Phytopathology 91: 1074–1080. doi: 10.1094/PHYTO.2001.91.11.1074
Seo JH, Choi JG, Park HJ, et al. (2022) Complete Mitochondrial Genome Sequences of Korean Phytophthora infestans Isolates and Comparative Analysis of Mitochondrial Haplotypes. Plant Pathol J. 38(5): 541-549. doi: 10.5423/PPJ.OA.07.2022.0093
Shen LL, Waheed A, Wang YP, et al. (2022) Mitochondrial Genome Contributes to the Thermal Adaptation of the Oomycete Phytophthora infestans. Front Microbiol. 13: 928464. doi: 10.3389/fmicb.2022.928464
Situ J, Xi P, Lin L, et al. (2022) Signal and regulatory mechanisms involved in spore development of Phytophthora and Peronophythora. Front Microbiol. 13: 984672. doi: 10.3389/fmicb.2022.984672
Stellingwerf JS, Phelan S, Doohan FM, et al. (2018) Evidence for selection pressure from resistant potato genotypes but not from fungicide application within a clonal Phytophthora infestans population. Plant Pathol 67: 1528-1538. doi: 10.1111/ppa.12852
Su C, Cui J, Liu Y, Luan Y (2022) Genome-wide identification and characterization of the tomato F-box associated (FBA) protein family and expression analysis of their responsiveness to Phytophthora infestans. Gene: 146335. doi: 10.1016/j.gene.2022.146335
2023) Spatiotemporal analysis of Phytophthora infestans population diversity and disease risk in Great Britain. Plant Pathology 00, 1– 11. doi: 10.1111/ppa.13697
, (Torto TA, Li S, Styer A, et al. (2003) EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res. 13: 1675–1685. doi: 10.1101/gr.910003
Tyler BM, Tripathy S, Zhang X, et al. (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313: 1261–1266. doi: 10.1126/science.1128796
van Poppel PM, Guo J, van de Vondervoort PJ, et al. (2008) The Phytophthora infestans avirulence gene Avr4 encodes an RXLR-dEER effector. Mol. Plant Microbe Interact. 21> 1460–1470. doi: 10.1094/MPMI-21-11-1460
van West P, Shepherd SJ, Walker CA, et al. (2008) Internuclear gene silencing in Phytophthora infestans is established through chromatin remodelling. Microbiology 154: 1482–1490. doi:
Varghese B, Valsalan R, Mathew D (2022) Novel MicroRNAs and their Functional Targets from Phytophthora infestans and Phytophthora cinnamomi. Curr Genomics. 23(1): 41-49. doi: 10.2174/1389202923666211223122305
Wang S, Boevink PC, Welsh L, et al. (2017) Delivery of cytoplasmic and apoplastic effectors from Phytophthora infestans haustoria by distinct secretion pathways. New Phytol. 216: 205-215. doi: 10.1111/nph.14696
Wang W, Jiao F (2019) Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity. Planta 250: 413–425. doi: 10.1007/s00425-019-03219-x
Wang H, Xiang Y, Wang D, Fu ZQ (2022) An epic war between an oomycete pathogen and plants. Mol Plant. S1674-2052(22)00360-4. doi: 10.1016/j.molp.2022.10.008
Wang Z, Ke Q, Tao K, et al. (2022) Activity and Point Mutation G699V in PcoORP1 Confer Resistance to Oxathiapiprolin in Phytophthora colocasiae Field Isolates. J Agric Food Chem. doi: 10.1021/acs.jafc.2c06707
Wang T, Lv JL, Xu J, et al. (2022) The catalase-peroxidase PiCP1 plays a critical role in abiotic stress resistance, pathogenicity, and asexual structure development in Phytophthora infestans. Environ Microbiol. doi: 10.1111/1462-2920.16305
Wang Z, Su C, Hu W, et al. (2023) The effectors of Phytophthora infestans impact host immunity upon regulation of antagonistic hormonal activities. Planta 258(3): 59. doi: 10.1007/s00425-023-04215-y
Wang B, Yang J, Zhao X, et al. (2023) Antifungal activity of the botanical compound rhein against Phytophthora capsici and the underlying mechanisms. Pest Manag Sci. doi: 10.1002/ps.7852
Winkworth RC, Neal G, Ogas RA, et al. (2022) Comparative analyses of complete Peronosporaceae (Oomycota) mitogenome sequences – insights into structural evolution and phylogeny. Genome Biol Evol. evac049. doi: 10.1093/gbe/evac049
Wu EJ, Wang YP, Yang LN, et al. (2022) Elevating Air Temperature May Enhance Future Epidemic Risk of the Plant Pathogen Phytophthora infestans. J Fungi (Basel) 8(8):808. doi: 10.3390/jof8080808
Yang LN, Ouyang H, Nkurikiyimfura O, et al. (2022) Genetic variation along an altitudinal gradient in the Phytophthora infestans effector gene Pi02860. Front Microbiol. 13: 972928. doi: 10.3389/fmicb.2022.972928
Zaynab M, Peng J, Sharif Y, et al. (2021) Expression profiling of pathogenesis-related Protein-1 (PR-1) genes from Solanum tuberosum reveals its critical role in phytophthora infestans infection. Microb Pathog. 161(Pt B): 105290. doi: 10.1016/j.micpath.2021.105290
Zheng H, You L, Meng S, et al. (2023) Unraveling the mysteries of (L)WY-domain oomycete effectors. Sci Bull (Beijing): S2095-9273(23)00730-2. doi: 10.1016/j.scib.2023.10.030
Zhou Y, Zhang Z, Bao Z, et al. (2022) Graph pangenome captures missing heritability and empowers tomato breeding. Nature. doi: 10.1038/s41586-022-04808-9
Zhou J, Qi Y, Nie J, et al. (2022) A Phytophthora effector promotes homodimerization of host transcription factor StKNOX3 to enhance susceptibility. J Exp Bot.: erac308. doi: 10.1093/jxb/erac308